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Abstract—Categorizing darkweb image content is critical for
identifying and averting potential threats. However, this remains
a challenge due to the nature of the data, which includes
multiple co-existing domains and intra-class variations. While
many methods have been proposed to classify this image content,
multi-label multi-class classification remains underexplored. The
complexity of darkweb imagery, combined with the need for
efficient classification systems, demands innovative approaches
that can handle both the technical challenges and the sensitive
nature of the content. In this paper, we present a comparative
study of few-shot multi-label classification methods using the
multimodal model CLIP. Our research addresses the growing
need for robust classification systems that can effectively catego-
rize diverse and complex image content while maintaining high
accuracy and computational efficiency. We particularly focus on
the challenges of handling multiple labels simultaneously and the
scalability of these systems in real-world applications. We analyze
and compare four different approaches: CLIP+Label Empower
Adapter, CLIP Sigmoid, SIGLIP, and CLIP+ML-Decoder. Our
study evaluates these methods based on their precision, recall,
and ability to handle increasing class numbers efficiently. Finally,
our research contributes to the field by providing detailed insights
into the strengths and limitations of each method.

Index Terms—Multi-label image classification, Multi-class im-
age classification, CLIP, SIGLIP, ML-Decoder

I. INTRODUCTION

The dark web, a specialized subset of the vast global
internet, is accessible only through dedicated web browsers.
It is widely recognized as a hub for illicit activities due to
its core characteristics: anonymity, which provides users with
a level of privacy not typically available on the surface web,
and untraceability, which makes it extremely challenging to
track the origins and destinations of data transfers. As a result,
the dark web serves as a critical source of threat intelligence,
offering insights into cyber-attacks, stolen assets, illegal trade,
arms trafficking, confidential data leaks, child exploitation, and
other criminal activities.

Automatically analyzing the visual content of the dark
web —such as images and videos- is essential for efficient
image categorization, enabling the detection and prevention
of potential threats. However, dark web image classification
remains an open challenge due to the complex nature of its
content.

979-8-3315-0993-4/25/31.002025] EE E

Jorge Garcia Castaflo
Vicomtech Foundation
Basque Research and Technology Alliance (BRTA)
Mikeletegi 57, 20009 Donostia-San Sebastidn (Spain)
jgarciac @vicomtech.org

Amazon,
Gift Cards

Vandaval (Vendor),
Weed

Vandaval (Vendor),
DeepShop

Fig. 1: Multi-label image examples from Dark web dataset

Many images suffer from low resolution, blur, and small
object sizes, often containing objects that blend into the back-
ground due to color similarities. Additionally, the coexistence
of multiple overlapping domains and intra-class variations —
where instances within the same category exhibit significant
visual differences — further complicate classification tasks, as
illustrated in Fig. 1.

This complexity highlights the importance of multi-label
classification, where an image can be assigned multiple rele-
vant labels rather than a single category.

A range of multi-label classification techniques have been
explored to tackle this problem. Some approaches decom-
pose multi-label classification into separate single-label prob-
lems[1], [2], while others refine loss functions or activation
functions to enhance classification accuracy[3], [4]. Addition-
ally, graph-based networks utilize learned label embeddings to
locate key discriminative features [5], [6], while transformer-
based architectures have been adapted for multi-label classifi-
cation tasks [7].

While these methods show promising results, they rely on
large, well-balanced datasets—which are difficult to curate in
real-world applications. Expanding a dataset with a balanced
class distribution is an exponentially complex process [8],
making large-scale multi-label learning infeasible in many
scenarios.

To address this, recent advances in vision-language models
like CLIP [9] offer new possibilities. By aligning visual and
textual embeddings, CLIP enables zero-shot and few-shot
learning in open-vocabulary settings. However, most CLIP-



based methods are tailored to single-label classification.

In this study, we address the problem of few-shot multi-
label image classification, focusing on the dark web as a
real-world, high-stakes application domain. Our hypothesis is
that adapting state-of-the-art few-shot multi-label classification
techniques to CLIP can improve generalization and perfor-
mance in low-resource, high-variability environments.

Our contributions can be summarized as follows:

e We analyze four state-of-the-art few-shot multi-label
classification techniques and provide a portable pipeline
applicable to any real-world dataset requiring few-shot
multi-label classification.

« We evaluate these approaches by implementing CLIP-
based methodologies for dark web multi-label image
classification.

e We compare our previous approach with newer CLIP-
based multi-label methodologies, presenting a transparent
comparative study which contributes to the field by pro-
viding detailed insights into the strengths and limitations
of each method.

II. RELATED WORK

A variety of methods have been proposed to solve the multi-
label classification problem, which can be broadly categorized
into (i) problem transformation methods and (ii) algorithm
adaptation techniques.

Early research focused on decomposing multi-label classifi-
cation into independent binary classification tasks[1]. How-
ever, this approach fails to capture inter-label correlations
and requires training separate classifiers for each cate-
gory—introducing a significant computational burden. To ad-
dress this, some studies propose classifier chaining[10], where
each classifier’s output serves as an input feature for sub-
sequent classifiers. While this strategy improves inter-label
dependency modeling, it still suffers from high computational
costs due to the growing number of classifiers required.

Another transformation-based approach, known as Label
Powerset (LP) [2], converts multi-label problems into multi-
class problems by treating each unique label combination as
a distinct class. However, LP struggles with the exponential
growth of label combinations, making it impractical for large
datasets.

Several methods aim to improve multi-label classification
by optimizing the loss function[3] or activation function[4] to
mitigate class imbalance issues.

In computer vision, multiple approaches have been devel-
oped for multi-label image classification. Hypotheses-CNN-
Pooling (HCP) [11] generates a large number of proposals
through object detection techniques, treating each proposal as
a single-label classification problem.

Beyond CNN-based methods, Graph Convolutional Net-
works (GCNs) have demonstrated high efficacy across vari-
ous vision tasks, including multi-label classification [5], [6],
[12]. GCN-based methods build classifiers by modeling label
relationships within graph networks.

Other approaches employ weakly supervised learning for
multi-label classification [13], leveraging knowledge distilla-
tion techniques from object detection models.

More recently, transformers[14]—originally developed for
modeling long-range dependencies in natural language pro-
cessing (NLP)[15]-[17]—have demonstrated strong perfor-
mance across computer vision tasks, including image classifi-
cation[7], [9] and object detection[18].

Several transformer-based multi-label classification tech-
niques have emerged:

Multi-label Transformer (MLT) [19], which models pixel-
wise attention to enhance feature extraction. Transformer-
based query learning [20], which uses decoder queries to
predict label existence. Graph-enhanced Transformers [21],
which combine GCNs with attention mechanisms. Metric
Learning Transformers [22], which integrate metric learning
to assess label similarities. Transformer-CNN Hybrids [23],
which generate attention maps per label, capturing intra-class
dependencies through convolutional layers.

Despite these advancements, existing multi-label methods
still require large datasets to achieve high accuracy. However,
data scarcity is a prevalent challenge in real-world applica-
tions, where collecting and labeling extensive datasets is both
resource-intensive and time-consuming.

Large-scale open-vocabulary models trained on vast
datasets, such as CLIP [9], offer a promising alternative by
leveraging zero-shot single-label classification and few-shot
multi-label classification. By adapting these models, we aim
to explore their potential for enhancing multi-label classifi-
cation in dark web imagery, where traditional methods face
significant constraints.

III. CLIP-BASED MULTI-LABEL CLASSIFICATION
METHODOLOGIES

There are four recent multi-label classification methods suit-
able for CLIP multi-modal model adaptation: (i) CLIP+Label
Empower(our previous model), (ii) CLIP Sigmoid (iii) SIGLIP
(iv) CLIP + ML-Decoder

A. CLIP+Label Empower

Label Empower [2] is one of the approaches that convert the
multi-label classification problem into a single-label classifi-
cation, by multi-labels to binary vectors by hot-encoding them
and assigning a unique label for each different binary vector.
As demonstrated in [24], it has the highest performance among
the other approaches to solving the multi-label classification
task by transforming the problem into a single-label one. Fig.
2 shows the architecture of our previously proposed method
CLIP+Label Empower Adapter.

Although our previously proposed model has the highest
recall, as shown in Table I, among even these four state-
of-the-art CLIP-adapted multi-label classification approaches,
not only between the traditional ones, it preserves a risk of
accuracy drop within a large number of classes due to its
exponentially growing hot-encoded labels. This possible risk
is especially important for such a dataset like darkweb, which
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Fig. 2: CLIP based Multi-Label Methodologies

is expected to grow fast in the sense of number of classes,
since new type of images and titles are expected to occur.

o Worst Case: O(N!) (All class labels exist in all possible
permutations in the dataset)

o Best Case: O(N) (The dataset contains only single
labels)

B. CLIP Sigmoid

CLIP has the capability to classify an extremely huge num-
ber of different classes, thanks to its open-vocabulary nature.
Yet we might need to fine-tune this state-of-the-art model for
our real-world datasets like darkweb dataset. In a single-label
pipeline, the proper way of fine-tuning such a model is to
add a linear layer following the image and text embeddings,
having output nodes as much as class numbers in the dataset.
In a single-label, multi-class classification scenario, softmax
is commonly used to distribute probabilities among different
classes, ensuring that the sum of all class probabilities equals
1.

e*
P(yi|z) = W (1)
j=1

where z; represents the logits for class ¢ and N is the total
number of classes.

However, in multi-label classification, where multiple labels
can be present simultaneously, softmax is suboptimal as it
forces mutual exclusivity among classes. Instead, sigmoid
activation is more appropriate, as it independently predicts
each label’s probability:

1
P(yilr) = PP )

This allows the model to assign a probability close to 1.0
for each relevant label in an image, ensuring that all present
classes are predicted without competition from other labels.

Thus, fine-tuning CLIP with a linear classification head
using Sigmoid activation is another approach. Although this
method does not have any risk of exponentially growing with
the number of class numbers, our experimental results show
its poor accuracy in comparison with our previously proposed
method.

C. SIGLIP

While SIGLIP [25] is a state-of-the-art, multi-modal model,
having a very similar architecture to CLIP, its main difference
is using Sigmoid, instead of Softmax while pre-training. This
fact provides us with the possibility to see if the poor perfor-
mance of CLIP + Sigmoid fine-tuning methodology occurred
due to using a different activation function in the fine-tuning
than pre-training.

Fig. 2 shows the very similar architecture of SIGLIP.

D. CLIP+ML-Decoder

ML-Decoder [26] is a state-of-the-art decoder implemen-
tation aiming to overcome the exponentially growing input
size in classification pipelines built with default transformer
decoders (Fig. 3) due to the self-attention layer. The method
proposes to remove the self-attention layer and claims its
affectless on the classification accuracy. It is also claimed to
use “group queries”, instead of fixed query embeddings per
class as in traditional transformer-decoders. Being the number
of groups a new hyperparameter in this architecture refers
to the amount of input query embeddings the decoder will
have, independently from the number of classes in the dataset.
Being K is the number of group queries, the decoder learns
to create K queries referencing N number of classes in a



dataset, instead of having N fixed queries for N classes as
in default transformer decoders. CLIP+ML-Decoder approach
uses both classification loss coming from the final prediction
logits and an alignment loss coming from the similarity of text
and image embeddings to obtain a final loss. The fixed text
embeddings are used only for this purpose, whereas non-fixed
group queries are learnable embeddings and they are updated
during the training.
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Therefore this approach enhances scalability, with two key
optimizations: (1) Self-attention removal, which reduces the
computational complexity from O(N?) to O(N), and (2)
Group decoding, which further optimizes inference by shifting
the complexity from O(N) to O(K), where KK represents the
number of meaningful groups instead of processing all classes
independently.

Self-attention removal:

O(N?) — O(N)
Group decoding:
O(N) = O(K)
Fig. 2 shows the architecture of CLIP + ML-Decoder.

IV. EXPERIMENTAL STUDY
A. Dark web dataset

The Dark web dataset, sourced from CFLW’s Dark Web
Monitor', includes images collected from dark web domains
about various crime categories like financial crime and organi-
zations, drugs and narcotics, weapons as well as their vendors
as individual classes. Similar to many real-world datasets,
the dark web dataset contains images with multiple labels,
meaning an image can belong to more than one class. It also
includes images with a single label. Fig. 1 shows some image
samples along with their ground truth labels from various
classes.

Thttps://cflw.com/dwm/
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Fig. 4: Data distribution of the dark web dataset for both train and test sets.

The dataset contains 46 classes from various categories
like Drugs, Narcotics, Weapons, and Financial Organizations
which do not have a strong correlation between them but
it includes subcategories having a strong relationship and
the possibility of being existing in the same image. Being
the current darkweb dataset is an experimental one, many
more classes are expected to join and thus, the scalability
performance is important than a regular Fig. 4 shows the
data distribution of the dark web dataset for both train and
test sets.

The darkweb dataset presents an imbalanced data problem.
Some dominant classes have many samples, whereas some
other classes suffer from a lack of data. Some classes like
drugs and narcotics, coming along with any type of drug type
or any individual vendor that has to be categorized, become
a very dominant class by collecting only a few samples of
its subgroups. Fig. 1 shows 3 image samples from the dark
web dataset, 1 belonging to a financial organization category,
2 belonging to the drugs and narcotics category containing
pictures of weed and the vendor names. While vendor names
may vary, each image having a vendor name information also
contains weed class, doubling the amount of “weed” class in
comparison of class names referring to the individual vendor
names. Which is robust example showing the reason of strong
class imbalance problem in darkweb dataset.

Lastly, another challenge is that some classes, especially the
vendor names like ”deep shop”, or “vandaval”, have textual
information rather than visual features which brings the need
for considering the combination of vision and language data.

B. Implementation Details

The fine-tuning strategy varies for each of the methods we
examine: CLIP + Label Empower was finetuned by freezing
the CLIP pre-trained model, and updating the weights of only
for between 5 to 10 epochs, using Adam optimizer with default



learning rate 1 x 1073, Softmax final activation function and
Cross Entropy Loss.

CLIP Sigmoid model was finetuned by freezing the CLIP
pre-trained model, and updating the weights of only the ad-
ditional linear classification head, for 50 epochs until conver-
gence, using the same optimizer and learning rate as previous
approach, with a Binary Cross Entropy Loss over the logits,
as a default approach of sigmoid classification.

SIGLIP model was finetuned without freezing any part
of the architecture, since our implementation any additional
part and the nature of the architecture is already compatible
for multi-label classification. It is finetuned 80 epochs until
convergence, using Adam optimizer with a learning rate of
5x 1075,

CLIP+ML-Decoder method was fine-tuned by freezing the
CLIP model and only focusing on updating the weights of
Decoder. A grid search over all the possible hyper-parameters
of the decoder block was made and the best results was
obtained with: multi-head attention head amount 4, dropout
in feedforward network 0.5, number of groups K 8, number
of layers (decoder block amount) 2. Similarly to the previous
methods, Adam optimizer is used, with a learning rate of
1x107%.

C. Evaluation Metrics

We evaluate model performance using standard classifica-
tion metrics: precision, recall, and fl-score. We furthermore
analyze the scalability of the model.

o Precision: Measures the proportion of correctly predicted
labels among all predicted labels. 3

o Recall: Measures the proportion of correctly predicted
labels among all true labels.4

o F1-Score: The harmonic mean of precision and recall. 5

o Scalability: Assesses how well the model adapts to
increasing class sizes.

. TP
Precision = TP+ FP 3)
TP
RECCL” = m (4)

2 x Precision x Recall
F1 = 5
—seore Precision + Recall ©®)

The true positives, false positives, false negatives are cal-
culated similarly to single-label classification. Fig. 5 shows
an image sample having two ground truth labels: VISA and
Banknotes. In case the predicted classes are "VISA and
Paypal” class, after extracting the single labels as "VISA” and
“Paypal”, this prediction would contribute as a true positive
for ”VISA” class, false positive for "Paypal” class and a false
negative for "Banknotes” classes.

Ground Truth Labels:

VISA
Banknotes

Fig. 5: An example multi-labeled image with 2 classes.

V. RESULTS AND DISCUSSION

Table I compares the performance of the four methods
in terms of precision, recall, fl-score and scalability and
summarizes our findings. CLIP+Label Empwoer method has
a low scalability since it has O(N!) as worst case scenario,
CLIP Sigmoid and SIGLIP has a moderate scalability since
they provide an improvement, but neither bring any growth,
meaning the worst and best case scenario is the same and
O(N). While CLIP+ML-Decoder improves the scalability from
OWN) to O(K), being N is the number of classes and K is the
number of groups defined by the end-user.

Table II compares the two models giving the best results
for dark web dataset, on the MS-COCO multi-label dataset,
causing the CLIP+LE method to have a huge drop of accuracy,
due to expanding 80 base classes to 234,581 hot-encoded
classes. These results show the aforementioned potential risk
of CLIP+LE method on the datasets having high relation
between the classes, causing the existence of various permu-
tations of multi-label vectors among the dataset. Even though
the results might be impressive for such amount of classes, it
is visible thatthe Label Empower method has a huge impact on
CLIP multi-modal model’s classification capacity by exploding
the class numbers unnecessarily.

TABLE I

COMPARISON OF FEW-SHOT MULTI-LABEL CLASSIFICATION METHODS. LE:
LABEL EMPOWER, MLD: ML-DECODER

’ Method Precision  Recall Fl_score  Scalability
CLIP+LE 0.944 0.931 0.937 Low

CLIP Sigmoid 0.493 0.276 0.351 Moderate

SIGLIP 0.880 0.735 0.801 Moderate
CLIP+MLD 0.958 0.916 0.936 High

Our results show that the CLIP+Label Empower Adapter
achieves the best recall, making it still a strong candidate
for recall-sensitive applications built for datasets not having
huge amount of classes, due to its low scalability and the
potential risk of providing poorer results with a huge number
of classes. On the other hand, the results show the medium-
level scalability models (CLIP+Sigmoid, SIGLIP), that are not
improving nor worsen the architecture according to the number
of classes, have poor accuracy in comparison with CLIP
+ adapter solutions. However, CLIP+ML-Decoder performs
well in both precision and recall, while also addressing the
scalability issue effectively and it should be a definite choice



for dataset having huge number of classes, where to not have
false positive predictions is more important than not missing
any true positive prediction, regarding it’s precision beating the
CLIP+Label Empower method while providing lower recall.

TABLE II

COMPARISON OF MULTI-LABEL MS-COCO MAP SCORE. LE: LABEL

EMPOWER AND MLD: MULTI-LABEL DECODER

Method Precision  Recall
CLIP+LE 0.592 0.555
CLIP+MLD 0.839 0.809

VI. CONCLUSION AND FUTURE WORKS

In this study, we analyzed four few-shot multi-label classi-
fication methods based on CLIP. Our results demonstrate that
CLIP+Label Empower Adapter excels in the recall, whereas
CLIP+ML-Decoder provides a more scalable solution by
mitigating the exponential growth problem in input features,
providing also a robust performance on accuracy metrics.
Future work will explore the efficient deployment pipeline
for CLIP+ML-Decoder approach for real-world multi-label
classification tasks.
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