
CLIP-based Few-Shot Multi-Label Classification

Methods: A Comparative Study

Yağmur Çiğdem Aktaş
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Abstract—Categorizing darkweb image content is critical for
identifying and averting potential threats. However, this remains
a challenge due to the nature of the data, which includes
multiple co-existing domains and intra-class variations. While
many methods have been proposed to classify this image content,
multi-label multi-class classification remains underexplored. The
complexity of darkweb imagery, combined with the need for
efficient classification systems, demands innovative approaches
that can handle both the technical challenges and the sensitive
nature of the content. In this paper, we present a comparative
study of few-shot multi-label classification methods using the
multimodal model CLIP. Our research addresses the growing
need for robust classification systems that can effectively catego-
rize diverse and complex image content while maintaining high
accuracy and computational efficiency. We particularly focus on
the challenges of handling multiple labels simultaneously and the
scalability of these systems in real-world applications. We analyze
and compare four different approaches: CLIP+Label Empower
Adapter, CLIP Sigmoid, SIGLIP, and CLIP+ML-Decoder. Our
study evaluates these methods based on their precision, recall,
and ability to handle increasing class numbers efficiently. Finally,
our research contributes to the field by providing detailed insights
into the strengths and limitations of each method.

Index Terms—Multi-label image classification, Multi-class im-
age classification, CLIP, SIGLIP, ML-Decoder

I. INTRODUCTION

The dark web, a specialized subset of the vast global

internet, is accessible only through dedicated web browsers.

It is widely recognized as a hub for illicit activities due to

its core characteristics: anonymity, which provides users with

a level of privacy not typically available on the surface web,

and untraceability, which makes it extremely challenging to

track the origins and destinations of data transfers. As a result,

the dark web serves as a critical source of threat intelligence,

offering insights into cyber-attacks, stolen assets, illegal trade,

arms trafficking, confidential data leaks, child exploitation, and

other criminal activities.

Automatically analyzing the visual content of the dark

web —such as images and videos- is essential for efficient

image categorization, enabling the detection and prevention

of potential threats. However, dark web image classification

remains an open challenge due to the complex nature of its

content.

Fig. 1: Multi-label image examples from Dark web dataset

Many images suffer from low resolution, blur, and small

object sizes, often containing objects that blend into the back-

ground due to color similarities. Additionally, the coexistence

of multiple overlapping domains and intra-class variations —

where instances within the same category exhibit significant

visual differences — further complicate classification tasks, as

illustrated in Fig. 1.

This complexity highlights the importance of multi-label

classification, where an image can be assigned multiple rele-

vant labels rather than a single category.

A range of multi-label classification techniques have been

explored to tackle this problem. Some approaches decom-

pose multi-label classification into separate single-label prob-

lems[1], [2], while others refine loss functions or activation

functions to enhance classification accuracy[3], [4]. Addition-

ally, graph-based networks utilize learned label embeddings to

locate key discriminative features [5], [6], while transformer-

based architectures have been adapted for multi-label classifi-

cation tasks [7].

While these methods show promising results, they rely on

large, well-balanced datasets—which are difficult to curate in

real-world applications. Expanding a dataset with a balanced

class distribution is an exponentially complex process [8],

making large-scale multi-label learning infeasible in many

scenarios.

To address this, recent advances in vision-language models

like CLIP [9] offer new possibilities. By aligning visual and

textual embeddings, CLIP enables zero-shot and few-shot

learning in open-vocabulary settings. However, most CLIP-979-8-3315-0993-4/25/31.002025IEEE



based methods are tailored to single-label classification.

In this study, we address the problem of few-shot multi-

label image classification, focusing on the dark web as a

real-world, high-stakes application domain. Our hypothesis is

that adapting state-of-the-art few-shot multi-label classification

techniques to CLIP can improve generalization and perfor-

mance in low-resource, high-variability environments.

Our contributions can be summarized as follows:

• We analyze four state-of-the-art few-shot multi-label

classification techniques and provide a portable pipeline

applicable to any real-world dataset requiring few-shot

multi-label classification.

• We evaluate these approaches by implementing CLIP-

based methodologies for dark web multi-label image

classification.

• We compare our previous approach with newer CLIP-

based multi-label methodologies, presenting a transparent

comparative study which contributes to the field by pro-

viding detailed insights into the strengths and limitations

of each method.

II. RELATED WORK

A variety of methods have been proposed to solve the multi-

label classification problem, which can be broadly categorized

into (i) problem transformation methods and (ii) algorithm

adaptation techniques.

Early research focused on decomposing multi-label classifi-

cation into independent binary classification tasks[1]. How-

ever, this approach fails to capture inter-label correlations

and requires training separate classifiers for each cate-

gory—introducing a significant computational burden. To ad-

dress this, some studies propose classifier chaining[10], where

each classifier’s output serves as an input feature for sub-

sequent classifiers. While this strategy improves inter-label

dependency modeling, it still suffers from high computational

costs due to the growing number of classifiers required.

Another transformation-based approach, known as Label

Powerset (LP) [2], converts multi-label problems into multi-

class problems by treating each unique label combination as

a distinct class. However, LP struggles with the exponential

growth of label combinations, making it impractical for large

datasets.

Several methods aim to improve multi-label classification

by optimizing the loss function[3] or activation function[4] to

mitigate class imbalance issues.

In computer vision, multiple approaches have been devel-

oped for multi-label image classification. Hypotheses-CNN-

Pooling (HCP) [11] generates a large number of proposals

through object detection techniques, treating each proposal as

a single-label classification problem.

Beyond CNN-based methods, Graph Convolutional Net-

works (GCNs) have demonstrated high efficacy across vari-

ous vision tasks, including multi-label classification [5], [6],

[12]. GCN-based methods build classifiers by modeling label

relationships within graph networks.

Other approaches employ weakly supervised learning for

multi-label classification [13], leveraging knowledge distilla-

tion techniques from object detection models.

More recently, transformers[14]—originally developed for

modeling long-range dependencies in natural language pro-

cessing (NLP)[15]–[17]—have demonstrated strong perfor-

mance across computer vision tasks, including image classifi-

cation[7], [9] and object detection[18].

Several transformer-based multi-label classification tech-

niques have emerged:

Multi-label Transformer (MLT) [19], which models pixel-

wise attention to enhance feature extraction. Transformer-

based query learning [20], which uses decoder queries to

predict label existence. Graph-enhanced Transformers [21],

which combine GCNs with attention mechanisms. Metric

Learning Transformers [22], which integrate metric learning

to assess label similarities. Transformer-CNN Hybrids [23],

which generate attention maps per label, capturing intra-class

dependencies through convolutional layers.

Despite these advancements, existing multi-label methods

still require large datasets to achieve high accuracy. However,

data scarcity is a prevalent challenge in real-world applica-

tions, where collecting and labeling extensive datasets is both

resource-intensive and time-consuming.

Large-scale open-vocabulary models trained on vast

datasets, such as CLIP [9], offer a promising alternative by

leveraging zero-shot single-label classification and few-shot

multi-label classification. By adapting these models, we aim

to explore their potential for enhancing multi-label classifi-

cation in dark web imagery, where traditional methods face

significant constraints.

III. CLIP-BASED MULTI-LABEL CLASSIFICATION

METHODOLOGIES

There are four recent multi-label classification methods suit-

able for CLIP multi-modal model adaptation: (i) CLIP+Label

Empower(our previous model), (ii) CLIP Sigmoid (iii) SIGLIP

(iv) CLIP + ML-Decoder

A. CLIP+Label Empower

Label Empower [2] is one of the approaches that convert the

multi-label classification problem into a single-label classifi-

cation, by multi-labels to binary vectors by hot-encoding them

and assigning a unique label for each different binary vector.

As demonstrated in [24], it has the highest performance among

the other approaches to solving the multi-label classification

task by transforming the problem into a single-label one. Fig.

2 shows the architecture of our previously proposed method

CLIP+Label Empower Adapter.

Although our previously proposed model has the highest

recall, as shown in Table I, among even these four state-

of-the-art CLIP-adapted multi-label classification approaches,

not only between the traditional ones, it preserves a risk of

accuracy drop within a large number of classes due to its

exponentially growing hot-encoded labels. This possible risk

is especially important for such a dataset like darkweb, which



Fig. 2: CLIP based Multi-Label Methodologies

is expected to grow fast in the sense of number of classes,

since new type of images and titles are expected to occur.

• Worst Case: O(N !) (All class labels exist in all possible

permutations in the dataset)

• Best Case: O(N) (The dataset contains only single

labels)

B. CLIP Sigmoid

CLIP has the capability to classify an extremely huge num-

ber of different classes, thanks to its open-vocabulary nature.

Yet we might need to fine-tune this state-of-the-art model for

our real-world datasets like darkweb dataset. In a single-label

pipeline, the proper way of fine-tuning such a model is to

add a linear layer following the image and text embeddings,

having output nodes as much as class numbers in the dataset.

In a single-label, multi-class classification scenario, softmax

is commonly used to distribute probabilities among different

classes, ensuring that the sum of all class probabilities equals

1.

P (yi|x) =
ezi

∑N

j=1
ezj

(1)

where zi represents the logits for class i and N is the total

number of classes.

However, in multi-label classification, where multiple labels

can be present simultaneously, softmax is suboptimal as it

forces mutual exclusivity among classes. Instead, sigmoid

activation is more appropriate, as it independently predicts

each label’s probability:

P (yi|x) =
1

1 + e−zi
(2)

This allows the model to assign a probability close to 1.0

for each relevant label in an image, ensuring that all present

classes are predicted without competition from other labels.

Thus, fine-tuning CLIP with a linear classification head

using Sigmoid activation is another approach. Although this

method does not have any risk of exponentially growing with

the number of class numbers, our experimental results show

its poor accuracy in comparison with our previously proposed

method.

C. SIGLIP

While SIGLIP [25] is a state-of-the-art, multi-modal model,

having a very similar architecture to CLIP, its main difference

is using Sigmoid, instead of Softmax while pre-training. This

fact provides us with the possibility to see if the poor perfor-

mance of CLIP + Sigmoid fine-tuning methodology occurred

due to using a different activation function in the fine-tuning

than pre-training.

Fig. 2 shows the very similar architecture of SIGLIP.

D. CLIP+ML-Decoder

ML-Decoder [26] is a state-of-the-art decoder implemen-

tation aiming to overcome the exponentially growing input

size in classification pipelines built with default transformer

decoders (Fig. 3) due to the self-attention layer. The method

proposes to remove the self-attention layer and claims its

affectless on the classification accuracy. It is also claimed to

use ”group queries”, instead of fixed query embeddings per

class as in traditional transformer-decoders. Being the number

of groups a new hyperparameter in this architecture refers

to the amount of input query embeddings the decoder will

have, independently from the number of classes in the dataset.

Being K is the number of group queries, the decoder learns

to create K queries referencing N number of classes in a



dataset, instead of having N fixed queries for N classes as

in default transformer decoders. CLIP+ML-Decoder approach

uses both classification loss coming from the final prediction

logits and an alignment loss coming from the similarity of text

and image embeddings to obtain a final loss. The fixed text

embeddings are used only for this purpose, whereas non-fixed

group queries are learnable embeddings and they are updated

during the training.

Fig. 3: Traditional vs ML Decoders

Therefore this approach enhances scalability, with two key

optimizations: (1) Self-attention removal, which reduces the

computational complexity from O(N2) to O(N), and (2)

Group decoding, which further optimizes inference by shifting

the complexity from O(N) to O(K), where KK represents the

number of meaningful groups instead of processing all classes

independently.

Self-attention removal:

O(N2) → O(N)

Group decoding:

O(N) → O(K)

Fig. 2 shows the architecture of CLIP + ML-Decoder.

IV. EXPERIMENTAL STUDY

A. Dark web dataset

The Dark web dataset, sourced from CFLW’s Dark Web

Monitor1, includes images collected from dark web domains

about various crime categories like financial crime and organi-

zations, drugs and narcotics, weapons as well as their vendors

as individual classes. Similar to many real-world datasets,

the dark web dataset contains images with multiple labels,

meaning an image can belong to more than one class. It also

includes images with a single label. Fig. 1 shows some image

samples along with their ground truth labels from various

classes.

1https://cflw.com/dwm/

Fig. 4: Data distribution of the dark web dataset for both train and test sets.

The dataset contains 46 classes from various categories

like Drugs, Narcotics, Weapons, and Financial Organizations

which do not have a strong correlation between them but

it includes subcategories having a strong relationship and

the possibility of being existing in the same image. Being

the current darkweb dataset is an experimental one, many

more classes are expected to join and thus, the scalability

performance is important than a regular Fig. 4 shows the

data distribution of the dark web dataset for both train and

test sets.

The darkweb dataset presents an imbalanced data problem.

Some dominant classes have many samples, whereas some

other classes suffer from a lack of data. Some classes like

drugs and narcotics, coming along with any type of drug type

or any individual vendor that has to be categorized, become

a very dominant class by collecting only a few samples of

its subgroups. Fig. 1 shows 3 image samples from the dark

web dataset, 1 belonging to a financial organization category,

2 belonging to the drugs and narcotics category containing

pictures of weed and the vendor names. While vendor names

may vary, each image having a vendor name information also

contains weed class, doubling the amount of ”weed” class in

comparison of class names referring to the individual vendor

names. Which is robust example showing the reason of strong

class imbalance problem in darkweb dataset.

Lastly, another challenge is that some classes, especially the

vendor names like ”deep shop”, or ”vandaval”, have textual

information rather than visual features which brings the need

for considering the combination of vision and language data.

B. Implementation Details

The fine-tuning strategy varies for each of the methods we

examine: CLIP + Label Empower was finetuned by freezing

the CLIP pre-trained model, and updating the weights of only

for between 5 to 10 epochs, using Adam optimizer with default



learning rate 1× 10−3. Softmax final activation function and

Cross Entropy Loss.

CLIP Sigmoid model was finetuned by freezing the CLIP

pre-trained model, and updating the weights of only the ad-

ditional linear classification head, for 50 epochs until conver-

gence, using the same optimizer and learning rate as previous

approach, with a Binary Cross Entropy Loss over the logits,

as a default approach of sigmoid classification.

SIGLIP model was finetuned without freezing any part

of the architecture, since our implementation any additional

part and the nature of the architecture is already compatible

for multi-label classification. It is finetuned 80 epochs until

convergence, using Adam optimizer with a learning rate of

5× 10−5.

CLIP+ML-Decoder method was fine-tuned by freezing the

CLIP model and only focusing on updating the weights of

Decoder. A grid search over all the possible hyper-parameters

of the decoder block was made and the best results was

obtained with: multi-head attention head amount 4, dropout

in feedforward network 0.5, number of groups K 8, number

of layers (decoder block amount) 2. Similarly to the previous

methods, Adam optimizer is used, with a learning rate of

1× 10−4.

C. Evaluation Metrics

We evaluate model performance using standard classifica-

tion metrics: precision, recall, and f1-score. We furthermore

analyze the scalability of the model.

• Precision: Measures the proportion of correctly predicted

labels among all predicted labels. 3

• Recall: Measures the proportion of correctly predicted

labels among all true labels.4

• F1-Score: The harmonic mean of precision and recall. 5

• Scalability: Assesses how well the model adapts to

increasing class sizes.

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 score =
2× Precision×Recall

Precision+Recall
(5)

The true positives, false positives, false negatives are cal-

culated similarly to single-label classification. Fig. 5 shows

an image sample having two ground truth labels: VISA and

Banknotes. In case the predicted classes are ”VISA and

Paypal” class, after extracting the single labels as ”VISA” and

”Paypal”, this prediction would contribute as a true positive

for ”VISA” class, false positive for ”Paypal” class and a false

negative for ”Banknotes” classes.

Fig. 5: An example multi-labeled image with 2 classes.

V. RESULTS AND DISCUSSION

Table I compares the performance of the four methods

in terms of precision, recall, f1-score and scalability and

summarizes our findings. CLIP+Label Empwoer method has

a low scalability since it has O(N!) as worst case scenario,

CLIP Sigmoid and SIGLIP has a moderate scalability since

they provide an improvement, but neither bring any growth,

meaning the worst and best case scenario is the same and

O(N). While CLIP+ML-Decoder improves the scalability from

O(N) to O(K), being N is the number of classes and K is the

number of groups defined by the end-user.

Table II compares the two models giving the best results

for dark web dataset, on the MS-COCO multi-label dataset,

causing the CLIP+LE method to have a huge drop of accuracy,

due to expanding 80 base classes to 234,581 hot-encoded

classes. These results show the aforementioned potential risk

of CLIP+LE method on the datasets having high relation

between the classes, causing the existence of various permu-

tations of multi-label vectors among the dataset. Even though

the results might be impressive for such amount of classes, it

is visible thatthe Label Empower method has a huge impact on

CLIP multi-modal model’s classification capacity by exploding

the class numbers unnecessarily.

TABLE I

COMPARISON OF FEW-SHOT MULTI-LABEL CLASSIFICATION METHODS. LE:

LABEL EMPOWER, MLD: ML-DECODER

Method Precision Recall F1 score Scalability

CLIP+LE 0.944 0.931 0.937 Low

CLIP Sigmoid 0.493 0.276 0.351 Moderate

SIGLIP 0.880 0.735 0.801 Moderate

CLIP+MLD 0.958 0.916 0.936 High

Our results show that the CLIP+Label Empower Adapter

achieves the best recall, making it still a strong candidate

for recall-sensitive applications built for datasets not having

huge amount of classes, due to its low scalability and the

potential risk of providing poorer results with a huge number

of classes. On the other hand, the results show the medium-

level scalability models (CLIP+Sigmoid, SIGLIP), that are not

improving nor worsen the architecture according to the number

of classes, have poor accuracy in comparison with CLIP

+ adapter solutions. However, CLIP+ML-Decoder performs

well in both precision and recall, while also addressing the

scalability issue effectively and it should be a definite choice



for dataset having huge number of classes, where to not have

false positive predictions is more important than not missing

any true positive prediction, regarding it’s precision beating the

CLIP+Label Empower method while providing lower recall.

TABLE II

COMPARISON OF MULTI-LABEL MS-COCO MAP SCORE. LE: LABEL

EMPOWER AND MLD: MULTI-LABEL DECODER

Method Precision Recall

CLIP+LE 0.592 0.555

CLIP+MLD 0.839 0.809

VI. CONCLUSION AND FUTURE WORKS

In this study, we analyzed four few-shot multi-label classi-

fication methods based on CLIP. Our results demonstrate that

CLIP+Label Empower Adapter excels in the recall, whereas

CLIP+ML-Decoder provides a more scalable solution by

mitigating the exponential growth problem in input features,

providing also a robust performance on accuracy metrics.

Future work will explore the efficient deployment pipeline

for CLIP+ML-Decoder approach for real-world multi-label

classification tasks.
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