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Abstract—The identification of key actors in complex networks
has gathered significant interest by virtue of their importance
in modern applications. Several of the existing methods employ
standard centrality measures to achieve their goal and as a
result, one of the main challenges is identifying key actor nodes
with high relevance across all such measures. In this work,
we propose a model based on the use of graph convolutional
networks (GCNs) that retrieves the key actors in a network
based on a centrality measure ranking aggregation scheme.
We experimentally demonstrate the effectiveness of our solution
compared to baseline and state-of-the-art approaches in terms
of: i) accuracy, ii) performance compared to standard machine
learning approaches, and iii) influence propagation capabilities.

Index Terms—key actor, influence, social network, complex
network, graph, neural networks

I. INTRODUCTION

A significant portion of modern applications employ com-
plex networks to describe the elaborate relationships between
their entities. Citation and collaboration networks, sensor
networks and, more importantly, social networks can be
intuitively modeled through graph data structures in which
the different entities and their associations are represented
through graph nodes and edges respectively. Over the past
years, researchers have shown an increased interest in the
identification of influential [30], [37] or critical nodes [18]
in a graph due to their relevance in several subject areas,
such as influence maximization [26], discovery of drug target
candidates and proteins [9], network security and dismant-
ling [28], [33], identification of influential spreaders [22],
network immunization [24], rumour control [36] and others.

Several approaches to key actor1 identification revolve
around the use of classic node centrality measures, such as
Degree Centrality [6], Betweenness Centrality [12], Closeness
Centrality [13], Eigenvector Centrality [7] and PageRank Cen-
trality [29]. While a single measure on its own cannot assess
the overall importance of a node, it offers an intuitive way
of ranking a node’s influence inside the graph based on a
structural property or information propagation capability [25].

It follows that, systems operating on complex networks
under a particular “budget” of monetary or human resources

1Throughout this work we use the terms ”influential nodes” and ”key
actors” interchangeably.

(e.g. social workers, criminal investigators etc.) [3], [4] would
benefit from focusing their analysis on a subset of nodes
that exhibit high scores across all centrality measures. Thus,
a need arises for the identification of key actor nodes that
are “universally influential”, i.e. nodes that are ranked higher
among their peers with respect to all of the centrality measures.

In this work, we tackle this problem by proposing a GCN-
based approach that combines local neighborhood centrality
scores with the end goal of inferring an accurate aggregated
ranking score for all nodes in the entirety of the graph. The
model is trained around the expected ranking of the nodes
according to the Borda Count voting rule [15] which is defined
over the node’s ranking in each of the centrality measures.

We experimentally showcase the accuracy of the proposed
method compared to baseline methods and state-of-the-art
influence maximization approaches. Furthermore, we demon-
strate that when the percentage of key actors requested is
small, our approach outperforms state-of-the-art methods in
the SIR and LT models in terms of infected or activated nodes.

II. RELATED WORK

Research has been growing regarding the identification of
influential nodes in graphs and subsequently several methods
have been proposed. VoteRank constitutes an iterative method
based on a voting procedure where the score of each node
is affected by its neighbors [40]. Towards the direction of
voting approaches, VoteRank++ additionally defines the voting
ability of each node as being proportional to its degree [23].
Moreover, an improved K-shell method has been proposed in
order to identify key nodes based on the k-shell method con-
sidering also the impact of the neighbor nodes [34]. EnRenew
algorithm uses the information entropy to identify influential
nodes in a graph [14], while RINF is a re-ranking method in
which the information spreading probability function is used to
rank a certain node [38]. Finally, the MCDE method has been
proposed that combines the core, degree, and entropy measures
to rank a node [32], while ECRM takes into consideration the
hierarchy of the nodes as well as their neighbors’ [39].

Neural networks have been successful in many scientific
fields for the last two decades. However, early variants of neu-
ral networks could not be implemented using (non-Euclidean)
graph structure data [8]; this has led to the development ofIEEE/ACM ASONAM 2022, November 10-13, 2022
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graph neural networks (GNN) [31]. One of the basic and well
established variants of GNNs are the graph convolutional net-
works (GCNs) [17]. GCNs perform a similar operation as the
plain convolutional neural networks (CNNs) [20]. However, a
major difference between CNNs and GCNs is that CNNs are
utilised on normal (Euclidean) structured data, while GCNs
are the generalized version of CNNs, in which the numbers
of edges vary and the nodes are unordered.

Finally, it is worth noting that Borda Count [15] voting
schemes have been previously used in the context of machine
learning methods and specifically as decision combination
functions for multi-classifier systems [35].

III. PROPOSED FRAMEWORK

Let G = (V, E) be a graph where V and E correspond to
the vertex and edge set of G respectively. Given five central-
ity measures ⟨degree, betweennness, closeness, eigenvector,
pagerank⟩ and their respective score rankings for each node

R = ⟨RDC ,RBC ,RCC ,REC ,RPC⟩ (1)

the Borda Count score of each node v in G is

Sv =
∑

Ri∈R

(
|V| − Ri

v

)
(2)

where Ri
v corresponds to the rank of v in score ranking Ri.

The objective is to identify the set of nodes D with the k
highest Borda Counts:

D = argmax
S′⊂S
|S′|=k

∑
Sv∈S′

Sv (3)

where S = {Sj} , j ∈ V corresponds to the Borda Counts for
all nodes in G.

Additionally, we define the local neighborhood scores of a
node v to be the sequence

Lv,r = ⟨LDC
v,r ,LBC

v,r ,LCC
v,r ,LEC

v,r ,LPC
v,r ⟩ (4)

where Li
v,r is the score of v for centrality measure i computed

in its local neighborhood of radius r, i.e. a subgraph of G
induced by all vertices with a distance up to r from v.

Exhaustively evaluating the Borda Count for each node
would be computationally prohibitive for large graphs. To
tackle this issue, we propose a model (henceforth termed
“ka-GCN”, i.e., “key actor-GCN”) that utilizes two GCN
layers followed by two fully connected layers and provides
an accurate Borda Count ranking approximation for a graph’s
nodes. To train the model, we annotate each node v with its
Lv,r scores for a hyperparameter r and explicitly compute the
Sv scores which serve as the target variable.

The model makes a prediction S(p)
v for a node’s Borda

Count score, given its Lv,r scores. Since we are interested in

the ranking of the S(p)
v scores and not their absolute values,

we make use of a ranking loss function to train the model [27]:

Loss(x, y) = max
(
0,−y ∗

(
S(p)
v − Sv

)
+ Margin

)
y =

{
1 if S(p)

v should be ranked higher than Sv

−1 if Sv should be ranked higher than S(p)
v

(5)

The end result corresponds to an approximation of the Borda
Count score for each node and can be used to find the key actor
nodes in the graph.

IV. EXPERIMENTAL EVALUATION

In this section we showcase the effectiveness of “ka-GCN”
under three different settings: i) The accuracy compared to
indicative baseline centrality measures and state-of-the-art
methods, ii) the performance compared to classic machine
learning approaches, and iii) the spreading rate under certain
conditions with regard to the SIR epidemiological model [1]
and the LT diffusion model [16].

The model was pretrained on a collection of synthetic
random graphs of varying topology. More specifically, we
generated ten graphs for each of the following three topolo-
gies: Lancichinetti–Fortunato–Radicchi (LFR) [19], Erdős-
Rényi (ER) [5], [10] and Barabási-Albert (BA) [2] and trained
the model over 200 epochs with an Adam optimizer and a
learning rate of 10−3. Specifically for the case of the LFR
graphs we set the mixing parameter µ equal to 0.25. The
framework was developed using Pytorch and the DGL library.
Graph manipulation and score computation was performed us-
ing graph-tool and NetworkX while synthetic graph generation
was performed using Networkit. All experiments were run on
an Intel Core i5-11600K CPU @ 3.90GHz machine with 12
cores, 16 GB RAM and an Nvidia GeForce RTX 3060 GPU.

A. Dataset Description

Our experiments were conducted on three real world
datasets retrieved from the SNAP [21] Dataset Collection:
“ego-Facebook”, “TVShows” and “ca-GrQc”. “ego-Facebook”
(2871 nodes and 62334 edges) contains social circles formed
from users of Facebook, “TVShows” (3892 nodes and 17262
edges) contains a graph of verified Facebook pages and the
mutual likes between them, and “ca-GrQc” (5242 nodes and
14496 edges) is a collaboration network of authors from the
arXiv General Relativity and Quantum Cosmology category.

B. Model Accuracy

In the first experiment we showcase the accuracy of our
proposed model in identifying the top-5% key actors of
a graph across the aforementioned centrality measures. We
compare the performance of the proposed pre-trained model
against baseline methods corresponding to centrality measures
outputting the 5% nodes with highest scores, as well as state-
of-the-art methods for identifying influential nodes.

In this first experiment, it is important to note that these
state-of-the-art methods were not originally designed to ef-
ficiently estimate scores across all centrality measures (akin
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ego-Facebook TVShows ca-GrQc
Degree 21.5% 51.7% 49.4%
Betweenness 38.1% 48.2% 68.0%
Eigenvector 5.5% 34.3% 41.8%
EnRenew 15.2% 26.6% 20.1%
VoteRank [40] 47.2% 40.0% 46.3%
VoteRank++ [23] 13.1% 22.5% 26.6%
IKS [34] 11.1% 44.6% 34.6%
ECRM [39] 6.2% 38.4% 34.9%
ka-GCN 59.0% 56.9% 70.0%

TABLE I: Model accuracy results

ego-Facebook TVShows ca-GrQc
LR 65.1% 54.2% 46.0%
SVM 62.7% 64.4% 44.4%
ka-GCN 76.7% 66.1% 55.5%

TABLE II: Comparison with machine learning approaches

to Equation 3) and thus, they could be viewed as not being
directly applicable to this problem. However, and in the
absence of other applicable algorithms, we have decided to
incorporate them as solid baseline choices.

We evaluate each method using the Accuracy metric [11]:

Acc =
|{returned top-5% nodes ∩ actual top-5% nodes}|

⌈|V| × 5%⌉
(6)

Table I summarizes our results. We observe that in every
dataset, “ka-GCN” achieves better performance than the rest
of the baseline methods and retrieves the most accurate results
with respect to the actual top-5% key actors (Equation 3). Fur-
thermore, “Betweenness” and “VoteRank” offer a consistent
alternative in all three datasets.

C. Comparison with Machine Learning Approaches

In the second experiment, we examine the performance of
“ka-GCN” compared to standard machine learning approaches.
Specifically, we split each graph into a train and test subgraph
consisting of 70% and 30% of the graph’s starting nodes
respectively and use the train dataset to build a logistic
regression model and an SVM model. Finally, we train the “ka-
GCN” model using the train dataset and compare the accuracy
of the three approaches when tasked with retrieving the top-
5% actors of the test dataset. Table II illustrates that “ka-GCN”
remains effective even in the absence of pre-training.

D. Model Propagation Capabilities

Further to the main purpose of this work, i.e. the iden-
tification of nodes with high values across all centrality
measures (Equation 3), in this experiment we also study the
propagation capabilities of the key actors identified by “ka-
GCN” compared to those of the key actors identified by other
state-of-the-art methods.

This analysis is performed using the SIR [1] and LT [16]
models. In the SIR model a node exists in one of three states:
Susceptible (S), Infected (I), and Recovered (R). Initially all
nodes are set to (S) apart from a seed set of nodes that is
set to (I). At each time moment, a node from (I) can infect a
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Fig. 1: Propagation rate under the SIR model
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Fig. 2: Propagation rate under the LT model

neighbor node from (S) with probability µ turning their state
into (I) as well. Additionally, at each time moment, a node
from (I) turns its state to (R) with a probability of σ. This
iterative process concludes when there are no significant node
state changes between subsequent time moments.

We focus on the spreading capabilities of the top-1% key
actors in each graph in an indicative setting where the infection
and recovery rates are substantially low and high, respectively
(µ = 10−3, σ = 0.7). Figure 1 demonstrates that under these
conditions the key actors identified by “ka-GCN” have higher
spreading capabilities than those of the other methods.

In the LT model we distinguish between active (A) and
inactive (N) node states. At first, all nodes are in the (N) state,
apart from a set of seed nodes which are in the (A) state.
At each time point, an inactive node receives influence from
its active neighbors. If the influence that the node received
exceeds a predefined threshold τ = 0.75, the node becomes
active itself. Similarly to the SIR model, the iterative process
stops when the model converges.

We study the propagation capabilities of each method
when the percentage k of key actors is 1%, 10% or 20%
by measuring the total active node count when the model
converges. Figure 2 shows that apart from the case of k = 10%
in the “ego-Facebook” dataset, “ka-GCN” achieves better
performance than the rest of the other methods in all cases.
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V. CONCLUSIONS

The identification of key actors (influential nodes) in a
complex network is of high importance due to their relevance
in many practical scenarios. Key actors typically exhibit high
centrality scores and as a result identifying nodes with high
values across all centrality measures would be advantageous
for several applications. In this work, we proposed a GCN-
based approach to identifying key actor nodes with high
centrality measures by utilizing a ranking aggregation strategy
and we experimentally demonstrated the effectiveness of the
model compared to baseline and state-of-the-art methods.
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