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ABSTRACT
The rapid advancement of Artificial Intelligence in the field of cy-
bersecurity brings about both opportunity and vulnerability, like
a dual-edged sword. The research community expressed concerns
over the robustness of AI against adversarial attacks, at the same
time escalating the demand for transparency and accountability
in the AI decision-making process. This paper highlights a critical
and under-discussed paradox: the pursuit of explainability may
inadvertently compromise security. The argument is that the very
mechanisms which make AI decisions interpretable, such as coun-
terexamples, can also reveal strategic insights on how to manipulate
model outcomes. This paper is first to demonstrate how the Diverse
Counterfactual Explanations algorithm, designed for generating
counterfactual explanations, can be exploited to alter model predic-
tions effectively. This is achieved by crafting samples tailored to flip
the labels of an ML-based detector, breaching the model’s integrity.
The findings of this paper highlight the need for a more nuanced
approach to xAI implementation in security-critical systems, one
which would balance the benefits of model transparency and model
robustness.
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1 INTRODUCTION
The recent success of Artificial Intelligence (AI) and its integration
of AI in many domains has provided remarkable value but has also
opened up novel vulnerabilities [10]. This is especially prominent
in cybersecurity, where the AI capability to automate and enhance
security measures is a coveted aspect of the implementation of AI,
however, the cost of new challenges like adversarial attacks has not
gone unnoticed [22][30]. One of the most pressing challenges in
this domain is the transparency and security of AI systems, which
has sparked a growing concern within the research community,
emphasising the need for robust and interpretable AI systems. The
demand for explainable AI (xAI), that is AI systems whose decision-
making process can be understood by humans, is escalating, driven
by the need for accountability and trust in AI decision-making.
However, this leads to a paradoxical scenario, where the pursuit of
transparency can come at the cost of security [15]. Specifically, the
mechanisms that make AI decisions interpretable, such as coun-
terfactual explanations (CEs), can provide attackers with insights
into how to manipulate the AI models. This is a crucial conundrum,
which is severely under-discussed in the cybersecurity research
community, especially with the fact that the motivations for cyber-
attacks can be very varied [21], which means this oversight could
be easily exploited.

This first-of-its-kind study examines how the DiCE (Diverse
Counterfactual Explanations) algorithm, which is designed to gen-
erate understandable and counterfactual explanations for AI deci-
sions, can be exploited to effectively alter model predictions. By
crafting specific samples that can flip the labels of an AI-based de-
tector, this study demonstrates a significant breach in the integrity
of the model, challenging the conventional approach to AI trans-
parency in cybersecurity. This is juxtaposed to one of the widely
known adversarial attacks, Zeroth Order Optimisation (ZOO), to
showcase the similarities between the two.

This innovative study employs the Random Forest (RF) classifier
to detect attacks. Then, both adversarial attacks and CEs are crafted,
and their effectiveness in misleading the classifier is measured.
Through this methodology, the study underscores the need for a
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more nuanced approach to the implementation of xAI in security-
critical systems, balancing the benefits of model transparency with
model robustness.

The significance of the new perspective at xAI and the study
that follows is in its contribution to the ongoing discourse on AI
in cybersecurity. By highlighting the vulnerabilities inherent in
the pursuit of explainable AI, this paper calls for a reevaluation of
current practices and strategies in AI deployment. It is imperative
that future developments in AI for cybersecurity not only focus
on enhancing transparency but also ensure that such efforts do
not inadvertently compromise the very security they are meant to
bolster. Therefore, the following Research Question is formulated:

RQ: Can CEs be Utilized to Formulate an Adversarial Attack
against AI-based Network Intrusion Detection?

To this end, CEs using the DiCE algorithm will be formulated,
juxtaposed to both the original samples and adversarial attacks
formulated with the Zeroth Order Optimisation procedure, and the
success rate of flipping the label will be assessed for both CEs and
adversarial attacks.

The paper is structured as follows: Section 2 provides a state
of the art analysis of the topic, the methods used in the study are
relayed in Section 3, Section 4 presents the setup of the experiment,
Section 5 showcases the results of the study, and the paper wraps
up with the conclusions.

2 RELATEDWORKS
In a significant body of literature, xAI is recognized as a critical
component in bolstering cybersecurity. For instance, Al-Essa and
colleagues show that, in the context of cybersecurity, xAI may be
employed to enhance adversarial training’s features selection [1].
In turn, Mendes and Rios propose a vast range of ways that xAI can
enhance cybersecurity [18]. Srivastava et al. believe that the poten-
tial of xAI for predicting diverse kinds of attacks is “immense” [26],
whilst Charmet et al. add that xAI is of great aid to security staff,
relieving them from alert fatigue and improving the assessment of
the threat, to name just a few [7].

However, researchers also point it out that explainability itself is
not without vulnerabilities. Capuano and colleagues believe that, in
the context of cybersecurity, applying explainability may become
“a double-edged sword”, as it as much contributes to the overall
cybersecurity posture as makes the system vulnerable to attacks
[6].

In [24] the authors point out the notion of xAI algorithms’
propensity to violate privacy, by revealing copious information
about the training set used in the formulation of AI models.

This paradox is echoed by Kuppa and Le-Khac, who remark that
not much research has been devoted to exploring how explanations
themselves may actually become new attack surfaces against sys-
tems [16]. Thus, in their comprehensive work, they have gathered
the possible ways of adversarial use of xAI, i.e., Membership In-
ference Attacks (MIA), the objective of which is to predict if data
points belong to the classifier’s training set, or Model Extraction
Attacks (MEA), aimed at stealing the copy of a machine learning
model, e.g. in order to be able to examine the inner workings of
the model and find ways of bypassing it, in an offline manner. The

researchers also refer to other possible adversarial uses of xAI, Poi-
soning Attacks (PA), i.e., injecting data into the training set, thus
influencing the outputs of the classifier, and Adversarial Examples
(AE), fooling the classifier by inputs similar to benign samples.

In their survey, Baniecki and Biecek [2] aggregate the methods
of utilizing explanations in a malicious way; among them, there
are Adversarial Examples, Data Poisoning, Model Manipulations,
Adversarial Models and Backdoor attacks. Importantly, Kuppa and
Le-Khac also bring awareness to the fact that the CE methods bear
resemblance to how AEs are generated. Naturally, their goals and
objectives are different. Yet, as the researchers put it, “a motivated
attacker can leverage CEs to achieve their goals” [16]. They also
prove their point, by showing how simple it is to generate malicious
counterfactual samples capable of evading anti-virus software, and
that CEs, instead of simply making black-box models comprehensi-
ble to humans, can be used as a valuable tool for adversaries. The
same sentiment has been expressed by Capuano et al., too [6].

Similarly, in their paper entitled “Counterfactual Explanations
Can Be Manipulated”, Slack and colleagues demonstrate that al-
though counterfactuals are “attractive”, they indeed can be manip-
ulated. The researchers thus propose the first formal framework to
describe the lack of robustness of CEs [25]. Virgolin and Fracaros
also touch upon the subject of the usability of CEs, considering
coming up with a proper desideratum related to their robustness
[28]. Lastly, Pawelczyk et al. perform a series of experiments to
check whether sensitive training data of the model can be leaked
using algorithmic recourses; specifically, they present a new group
of membership attacks, the so-called counterfactual distance-based
attacks [20].

Finally, Stoppel has demonstrated a method of tampering with
explanations in order to conceal an adversarial attack on images.
By this method, the explanations are modified in such a way that
they do not seem questionable. In their work, the author underlines
the crucial role of the so-called adversarial fine-tuning, contribut-
ing to the method being successful, as it not only helps keep the
classification performance in the context of original images and
ensures consistent misclassification of the original images but also
enables making the adversarial explanations resemble the original
ones [27].

3 METHODS
3.1 Random Forest
The Random Forest (RF) Classifier was chosen for its robustness
and effectiveness in classification tasks in network intrusion detec-
tion [13].

RF, introduced by [4] and [12], combines multiple tree predictors.
Each tree in the ensemble is created by randomly selecting a small
set of inputs, followed by determining the optimal way to split the
data to minimise information entropy. In this method, every tree is
built from an independently sampled dataset, and their predictions
are averaged, a technique also known as bootstrap aggregation [3].
The trees are grown to their full capacity using the Classification
and Regression Tree (CART) methodology [5] and are not pruned
back. The overall performance of a RF is determined by the strength
of each individual tree, defined by its accuracy, and the diversity
among the trees, which refers to how different the trees are from
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𝐶 (𝑥) = argmin

(
1
𝑘

𝑘∑︁
𝑖=1

[𝜆1 × 𝑦𝑙𝑜𝑠𝑠 (𝑓 (𝑐𝑖 ), 𝑦) + 𝑑𝑖𝑠𝑡 (𝑐𝑖 , 𝑥)] − 𝜆2 × 𝑑𝑝𝑝_𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 (𝑐1, ..., 𝑐𝑘 )
)

(1)

one another. Breiman highlighted that the generalization error of a
forest depends on these two factors.

Although the Random Forest algorithm may seem straightfor-
ward, its underlying complexity allows it to be recognized as "one
of the best-performing learning algorithms" [23].

3.2 Diverse Counterfactual Explanations (DiCE)
DiCE [19] was employed to generate CEs, offering insights into the
AI model’s decision-making process. The use of DiCE is crucial for
understanding how AI decisions can be interpreted and potentially
manipulated. DiCE is a method for the creation of CEs, which takes
a trained model f and an instance x as an input, and generates k
CEs which lead to a different label than the classification of x by f.
The method incorporates constraints for proximity and diversity,
leading to finding CEs that are close to the original instance (prox-
imity), lead to a different decision (via yloss), and are diverse among
themselves (via dpp_diversity). The optimisation formula for this
approach is expressed in Eq. 1.

3.3 Zeroth Order Optimisation
Alongside DiCE, Zeroth Order Optimization (ZOO) [17] was incor-
porated as a method for crafting evasion adversarial attacks. ZOO’s
ability to generate adversarial samples without requiring gradient
information is used as a direct comparison to DiCE samples and the
original unaltered samples, to better highlight the adversarial prop-
erties of CEs. Zeroth Order Optimization based black-box attack
method does not require internal access to the classifier. Instead,
the attack estimates the gradient for a small perturbation to the
sample, measures how far the current sample is from flipping the
label, and iteratively updates the sample one alteration at a time, fo-
cusing on updating important features, where alterations are more
meaningful [8].

3.4 Conceptual overlap of Counterexamples
and Adversarial Attacks

This study emphasises the observation also made independently
in [16] and [25] that there is a conceptual overlap between CEwhich
flipped the detection label and an adversarial attack, especially in
the context of ML-based IDS. Both CE and adversarial attacks aim
to change the classification label, at the same time minimising the
change to the input. As a result, both methods provide information
on how to achieve label change with minimum input alterations,
which is critical from the standpoint of intrusion detection.

4 NOVEL PERSPECTIVE: THE EXPERIMENTS
IN USING COUNTERFACTUAL SAMPLES AS
AN ATTACK VECTOR

In the context of evaluating the ability of adversarial attack algo-
rithms and explainability methods to flip the classification label

from attack to benign in NIDS, this study focuses on correctly clas-
sified attack samples (True Positives). Correctly classified attack
samples provide a clear baseline to measure the effectiveness of
the adversarial and counterfactual methods. Since these samples
are already being correctly identified as attacks by the NIDS, any
change to a benign classification as a result of applying ZOO or
DiCE indicates a successful manipulation. The goal is to under-
stand the vulnerability of the NIDS to crafted False Negatives (i.e.,
attacks that are misclassified as benign). By starting with correctly
classified attacks, the study directly measures how adversarial and
counterfactual techniques can circumvent detection. Moreover, us-
ing a consistent set of correctly classified attack samples ensures
that the experiment has a controlled starting point. This consis-
tency is crucial for comparing the effectiveness of the ZOO and
DiCE algorithms in altering the model’s predictions. Finally, by us-
ing correctly classified attack samples, the study can quantitatively
measure the success rate of the adversarial and counterfactual meth-
ods in terms of the proportion of attack labels that were flipped to
benign.

4.1 Okiru Malware
The Okiru malware is an example of a malicious software variant
specifically designed to target and infect devices that are part of
the Internet of Things (IoT), such as medical devices employing
ARC processors [29]. Okiru’s advanced evasion techniques make
it an ideal candidate to test the robustness of AI-based detection
systems. It provides a real-world example of malware that employs
methods specifically designed to evade detection, like obfuscation
and polymorphism, and would be first in line to also use adversarial
evasion to hide from AI-based detection.

4.2 Experimental Procedure
The experiment involved training the Random Forest (RF) Classi-
fier on the preprocessed IoT-23 data of the Okiru malware attacks.
The test set was pushed through the RF model and only the sam-
ples classified correctly as Okiru were selected. DiCE was used
to generate CEs for the selected samples, and ZOO was used to
craft adversarial samples. This is to test the model’s vulnerability
to manipulation and to assess the effectiveness of CEs in revealing
model weaknesses.

The pipeline of the experiment has been presented in Fig. 1. The
figure has two parts - the top row depicts a usual classification
pipeline, the bottom shows how subjecting the attack samples to
DiCE leads to a sample that has a flipped label, similarly to an
adversarial attack.

4.3 Dataset
This study utilises the Aposemat IoT-23 dataset [11] captured in the
Stratosphere Lab in the Czech Republic. The set, which contains
labelled traces of IoT malware was selected as a realistic collection
of attack and benign samples. Since this study focuses on making
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Figure 1: The pipeline of the experiment.

attacks undetectable by AI methods, a subset of the collection con-
taining the Okiru attacks and the corresponding Benign traces were
leveraged to complete the aims of the study.

4.4 Evaluation Metrics
In order to provide comprehensive understanding of the model’s
predictive performance and its resilience to adversarial attacks, a
set of metrics were selected [14].

Namely, the model’s performance was evaluated using the met-
rics of Precision (Eq. 2), Recall (Eq. 3), F1-Score (Eq. 4), and the
attacks success rate in flipping the label is expressed in Eq. 5

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3)

𝐹1 = 2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(4)

Success Rate =
Number of Successful Label Flips

Total Number of Samples
× 100% (5)

In the equations, TP stands for True Positive and TN - True Nega-
tive. Similarly, FP and FN mean False Positives and False Negatives,
respectively.

5 RESULTS
Figures 2, 3 and 4 present a visual comparison of the three kinds
of samples: the blue bars present the values of the CE samples,
the green bars are of the adversarial attacks, the red bars indicate
the values of the features of the original test samples. The figures
emphasize the changes in the feature values necessary to flip the
label from Okiru to Benign. In Figure 2, the first feature is mostly
affected, with CE sample having a larger effect than the adversarial
attack. In Figure 3, the CE did not affect the first feature, only the
second one, in contrast to the adversarial attack, which only affected
the first feature. Similarly, in Figure 4, the CE did not affect the first
feature, only the second. The adversarial attack focused on small

alterations to the first and the fifth feature. Tables 1, 2 relay the
classification results of the RF on the entire test set samples after
the samples were treated with either CE or ZOO. Since the final test
set only contains samples that were correctly identified as Okiru,
the tables only contain the metrics for Okiru detection. For Table 1,
which contains the classification results on the CEs, the Recall is
0.58. This means that over 40% of the samples were successfully
flipped with minimal alterations. This is explicitly stated in Table 3,
with the 42% success rate of the counterfactuals. While the CEs are
not as effective as adversarial attacks, a significant portion of the
samples can be successfully flipped.

As a result, the information gained from flipping labels via CE
can be leveraged to build malware which avoids certain patterns of
network traffic, circumventing detection. It is crucial to point out
that while until recently in most cases to use adversarial attacks
one would need to have access to the model, or be able to steal the
model [9]. Yet, with CE, the key to crafting samples that circumvent
detection could be provided by the vendor.

Table 1: Classification Report for the CEs (with no benign
samples in the test set only Okiru detection is reported)

Class Precision Recall F1-Score
Okiru 1.00 0.58 0.74

Table 2: Classification Report for adversarial attack

Class Precision Recall F1-Score
Okiru 1.00 0.01 0.02

Table 3: Comparison of Attack Type Success Rates

Kind of Attack Success Rate
Counterfactuals 42%
Adversarials 99%
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Figure 2: The relative changes in sample features compared between the ZOO adversarial attack (green), the CE (blue) and the
Original Sample. The x-axis contains the features, the y-axis shows the standardised value of the features.

Figure 3: The relative changes in sample features compared between the ZOO adversarial attack (green), the CE (blue) and the
Original Sample. The x-axis contains the features, the y-axis shows the standardised value of the features.

6 CONCLUSIONS
DiCE, an xAI tool used for generating counterfactual explanations,
plays a crucial role in unravelling the decision-making processes
of AI models. By creating alternative scenarios that could lead to
different classification outcomes, DiCE helps in understanding how
minimal changes in input data manipulate AI decisions.

This study proposes an observation of the conceptual overlap
between CE and adversarial attacks. Both strategies aim to alter
the classification labels while making minimal changes to the input
data. This similarity is crucial as it indicates that methods developed
for xAI, like DiCE, can inadvertently reveal techniques for crafting
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Figure 4: The relative changes in sample features compared between the ZOO adversarial attack (green), the CE (blue) and the
Original Sample. The x-axis contains the features, the y-axis shows the standardised value of the features.

successful adversarial attacks, which is a critical observation for
security applications.

This way, the Research Question: "Can CEs be Utilized to For-
mulate an Adversarial Attack against AI-based Network Intrusion
Detection?" has been answered positively.

The study explored the use of counterfactual samples as potential
vectors for launching attacks on NIDS. By focusing on samples that
were initially correctly identified as attacks, the research demon-
strated how applying counterfactual and adversarial techniques
could lead to false negatives.

The experimental involved training of the RF Classifier on the
IoT-23 dataset, specifically on data pertaining to the Okiru malware
attacks.

The results indicated that while counterfactual methods were
not as effective as adversarial attacks in flipping detection labels,
they still posed a significant threat. Over 40% of the samples could
be manipulated to flip their labels, demonstrating the potential of
these techniques in evading detection systems.

These findings have profound implications for the AI applica-
tions in security. They highlight the need for these systems to adapt
and become more resilient against the tactics and a cautionary ap-
proach towards the use of explainability tools like DiCE, as they
could inadvertently provide blueprints for creating undetectable
malware.

With the current proliferation of AI, xAI techniques are nec-
essary from the standpoint of ethics and trustworthiness of AI

deployments. Interpretable AI is crucial for critical deployments,
for example in police applications. Law enforcement agencies can
enhance their investigative methods by leveraging their data-rich
environments with AI tools. The H2020 STARLIGHT project fosters
robust use of AI in tackling major criminal threats. STARLIGHT
brings together 50 partners from 18 European countries with 15 law
enforcement agencies. As brought to attention in this paper, xAI
methods, which are required for trustworthy AI, can be leveraged
to harm the robustness of AI. This notion will be further explored
and addressed in the project.

7 FUTURE DIRECTIONS
While the domain of xAI continues to expand, developing novel
techniques to detect when an xAI output might be used for adver-
sarial purposes and alerting the system will become more pressing.
Thus, in the future, we plan to design and develop methods to
counter the very effect described in this paper. We will focus on
tailoring secure xAI solutions for use in critical infrastructure sec-
tors, such as cybersecurity, healthcare, fake news detection and law
enforcement applications, where security is paramount.
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