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Abstract

The introduction of the European Union Artificial Intelligence Act, the NIST Arti-

ficial Intelligence Risk Management Framework, and related norms demands a better

understanding and implementation of novel risk analysis approaches to evaluate sys-

tems with Artificial Intelligence components. This paper provides a cybersecurity risk

analysis framework that can help assessing such systems. We use an illustrative example

concerning automated driving systems.

Keywords: Artificial Intelligence Systems, Risk Analysis, Adversarial Machine Learning,

Cybersecurity, Regulation.
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1 INTRODUCTION

Artificial Intelligence (AI) is broadly understood as the study and implementation of com-

puter systems capable of carrying out activities that would typically need human intelligence.

Its importance is immediately appreciated if we think of its application to speed up processes

that previously took years of expensive research, as in drug discovery e.g. Gallego et al. (2021);

or to facilitate the introduction of radically new technologies like automated driving systems

(ADSs), e.g. Caballero et al. (2023). Huge investments by the European Union (EU), USA

or China, and big tech firms in AI also showcase its potential. Yet alongside its benefits, the

introduction of AI entails risks. Examples include deep fake technology employed to insert

celebrities’ faces onto pornographic content (Hasan & Salah, 2019), the use of AI to facilitate

the generation of biochemical weapons (Urbina et al., 2022), or the creation of fake content

preventing cyber-attribution (Leone, 2023). Moreover, risks are exacerbated by the growing

speed of AI progress. A popular report by the Center for Research on Foundation Models

(CRFM) (Stanford Center for Research on Foundation Models, 2021) emphasises the risks

associated with such type of models, large-scale, pre-trained deep learning networks provid-

ing multi-purpose AI, usually based on unprecedented natural language processing (NLP)

capabilities.

To shed some light on the production and deployment of AI-based systems, in particular

their safety and security, the EU has approved the AI Act (European Commission, 2021) (from

now on the Act), the first law globally regulating AI. However, implementing the Act posits

several challenges made evident by, e.g., ChatGPT (Helberger & Diakopoulos, 2023). The

Act classifies AI systems into four risk categories (unacceptable, high, limited or minimal)

accordingly demanding appropriate remedial actions (Madiega, 2021). The U.S. National

Institute of Standards and Technology (NIST) has also released an initial version of an AI

Risk Management Framework (NIST, 2023) (AIRMF from now on) aimed to support how to

manage risks in the design, development, usage, and assessment of AI systems and services.
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The Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial

Intelligence (The White House, 2023) has also been recently published by the US government.

From a policy perspective, it is evident that AI risk management is attracting lots of attention

(Agarwala et al., 2020). However, most current approaches remain at a qualitative level,

frequently adopting at most risk matrices (Papadatos et al., 2023) for risk analysis purposes,

despite well-known shortcomings (Cox Jr, 2008). Clearly it is of capital importance to conduct

solid and trustworthy risk analysis to avoid the manipulation of misinformation attempts that

could be weaponized as part of disinformation campaigns (Thekdi & Aven, 2023).

Given the importance of the issue, we provide here a framework for cybersecurity risk

analysis in systems containing AI components. First, Section 2 remarks the novel risk analysis

issues that AI systems and components bring in. Section 3 then describes how such issues

may be addressed, illustrated with an example concerning ADS cybersecurity in Section 4.

We conclude by discussing some implications of our proposal. Software to reproduce the case

study results may be found in https://github.com/***.1

2 NOVEL RISK ANALYSIS ISSUES IN

SYSTEMS WITH AI COMPONENTS

Our approach stems from the cybersecurity risk analysis framework elaborated in Ŕıos Insua

et al. (2021a; 2021b), based on the Information Security Forum (2016) proposal depicted in

Figure 1. The framework covers four basic elements: organization features, relevant threats

and impacts, and the adopted cybersecurity portfolio. The figure provides some details con-

cerning such components, e.g. impacts are segregated as insurable or non-insurable. Black

arrows identify novel risk issues brought in by the introduction of AI components as we

specify after a brief overview.

1Blinded for review process.
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Figure 1: Main components in a cybersecurity risk management framework. Black arrows
indicate AI-affected elements. Adapted from Ŕıos Insua et al. (2021b).

Overview. AI systems, importantly those described as foundation models, bring along new

risks and increase others (CRFM, 2021). Their intricacy complicates understanding and con-

trol, bringing additional issues in terms of explainability, reliability, safety and accountability,

among others.

Emergent capabilities of AI entail challenges. In some cases, such capabilities are dis-

covered only after the system has been deployed, notably in Large Generative AI models

(LGAIMs), like ChatGPT, Stable Difussion or Bard, which have demonstrated impressive

results on a wide variety of NLP, reasoning and creative tasks. Dozens of emergent abili-

ties have been described, including multi-step arithmetic, or operating other AIs to generate

code. Yet they may also hallucinate, producing seemingly plausible but untrue statements.

The emergence of abilities is also affected by the fact that AIs are goal-oriented systems in
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the sense that the goals specified by AI developers (upstream) and users (downstream) affect

how the system learns, its functionalities and interactions. Moreover, additional risks arise

from function creep, enabling non-valid uses affecting the dependability of the system, and

even unsafe, unfair or malicious actions.

Although risk analysis typically pays attention to emergent, or potentially emergent, fea-

tures of systems (e.g., failures, vulnerabilities, threats), the existence of emergent capabilities

in AI adds a layer of complexity. In addition, the Act emphasises the so-called high-risk AI

systems, including those used as safety components of a product or for purposes such as

biometric identification, categorization of persons, and critical infrastructure protection.

AI-related impacts. Beyond conventional CIA (Confidentiality, Integrity, and Availabil-

ity) technical impacts (Ham, 2021), Couce-Vieira et al. (2020) (CV20 from now on) present a

broader vision of cybersecurity objectives, including business and societal elements. However,

several organizations have proposed additional impacts brought in by AI relevant in cyber-

security terms. To wit, let us mention the AIRMF and its technical (accuracy, reliability,

robustness, resilience), socio-technical (explainability, interpretability, privacy, safety, bias

manageability) and guiding (fairness, accountability, transparency) principles from which

novel impacts emerge. Notably, questions about safety, ethics, bias, privacy and fairness

have become a top concern in the digital world, including AI as it becomes a more popular

technology, and there is a need to adjust, match and, possibly, update earlier cybersecurity

objectives to cover the new impacts.

AI-based assets. Many systems include AI blocks, or functional components heavily de-

pendent on AI, that are susceptible to attacks, in particular, the above-mentioned safety

components in the Act. A prime contemporary example are ADSs which have as core com-

ponents perception systems typically based on classifiers using convolutional neural networks

(Gallego & Ŕıos Insua, 2022). As Boloor et al. (2019) describes, these have been the subject

of, e.g., data poisoning attacks with potentially catastrophic outcomes. Following Thekdi &
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Aven (2023) and ETSI (2022), and given the relevance of hardware weaknesses, we adopt a

broad view and consider as well hardware assets backing AI components.

AI-based security and recovery controls. Many systems include AI elements as part

of their security controls or safety components, susceptible to being fooled with malicious

purposes. One example are content filters, aimed to filtrate undesirable content. For instance,

spam detectors have been shown to be easily fooled with carefully crafted emails (Naveiro

et al., 2019) and malware detectors (Redondo & Rı́os Insua, 2020) are plagued with obfuscated

malware. AI-based recovery controls may be affected as well by attacks. As an example, an

AI-based managed backup system relying on an intrusion detection system (IDS) could see

its IDS fooled by an adversarial machine learning (AML) attacker poisoning data in tandem

with ransomware targeted to encrypt the backup database.

AI-based targeted attacks. As in other domains, attacks against AI systems can be

generic (i.e., released in the wild) or targeted (due to being specially valuable for attackers

because of the stored information or the supported operations). In particular, attackers can

use for such purpose AI-based attacks as it happens, e.g., with employing poisoned images to

overcome an image recognition system (Ŕıos Insua et al., 2023) or enable side-channel attacks

facilitating reverse engineering (Masure et al., 2020). Other attacks target AI systems (Sanyal

et al., 2022) by e.g. injecting poisonous information in the training data or taking advantage

of function creep to abuse the system. Moreover, cloud outsourcing in paradigms such as

ML-as-a-Service implies third-party dependence and risks like model stealing or the existence

of backdoors (Oliynyk et al., 2023) in the outsourced AI models (Goldwasser et al., 2022).
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3 SOLUTIONS TO NEW RISK ANALYSIS

ISSUES IN SYSTEMS WITH AI COMPONENTS

This section suggests solutions to the issues identified in Section 2 including a broad AI-

related risk analysis framework (Section 3.2). When elsewhere available, particularly in

Sections 3.3 and 3.4, we mainly summarise the literature with relevant pointers. Section 4

details a case illustrating most of the issues raised here.

3.1 Impacts

In order to adjust cybersecurity impact lists, in particular that in CV20, with those suggested

in emerging AI risk management guidelines, we focus our discussion on the AIRMF, some of

whose impacts are also present in the Act, the OECD AI Recommendation (2019) and the

CRFM report, albeit with somewhat different names or structures. The CV20 list is struc-

tured as a cybersecurity objectives (CSO) tree (Figure 2) including objectives measurable in

monetary terms (operational costs, income reduction, cybersecurity costs, personal economic

damage, other costs) and others not directly measurable in such terms (reputation, fatalities,

physical and mental injuries, injuries to personal rights, environmental damage).

The AIRMF focuses on the concept of trustworthiness. A trustworthy AI system should

be valid and reliable, safe, secure and resilient, accountable and transparent, explainable and

interpretable, privacy-enhanced and fair. Each of these features comprises additional sub-

features. For example, validity entails accuracy, reliability and robustness. Beyond these, the

AIRMF identifies potential impacts associated with AI risks, such as harm to people, orga-

nizations, and ecosystems. As examples, it mentions harm to personal rights ; or impact over

democratic participation. The Act is more explicit identifying prohibited practices and high-

risk AI systems, including their potential impacts. For example, a forbidden functionality

for an AI system would be to employ subliminal techniques beyond a person’s consciousness
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Figure 2: Cybersecurity objectives (CSO) tree in CV20. Dashed box, monetary objective;
solid line box, non-monetary.

in order to materially distort his/her behaviour.

Interestingly, with appropriate modifications, the CV20 CSO tree actually covers the

novel impacts identified in the AIRMF, the Act and the CRFM report. Such documents

emphasise people’s rights and physical risks in contrast to cybersecurity frameworks from

previous decades, in which those topics were less salient, even absent. Moreover, the CV20

tree was constructed with decision support purposes in mind, integrating different types of

objectives through multiattribute utilities and meeting standard requirements for decision

support attributes (comprehensive, measurable, non-overlapping, relevant, unambiguous and

understandable) (Keeney & Gregory, 2005). Thus, we can actually use the CV20 tree to map

those harms. For instance, impacts on critical infrastructure relate to the impacts on other

organizations in the tree, a large-scale impact that harms multiple organizations. Another

example is discrimination against groups; CV20 identified the UN Universal Human Rights

Index Database as a major source to identify specific damages to personal and social rights,

including discrimination against groups.
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The AIRMF trustworthiness approach, implicit in the Act, would make for interesting

candidates to expand our original tree. However, impacts in terms of AI trustworthiness

features can also be translated into our objectives. As mentioned, trustworthiness could

be interpreted by means of the CIA triad, taking into account additional points related to

resiliency, accuracy, safety, and privacy (ISO, 2020) and sustainability (McDaniel, 2022).

CV20 did not include them in the tree but rather integrated them into other objectives,

like confidentiality aspects such as personal (personally identifiable information) or property

rights (copyright, trademark, patent infringements), the organization’s income or reputation

(due to trade secret exposition) or noncompliance with cybersecurity regulations.

All in all, as Table 1 reflects, following a similar approach, we are able to map into the

CV20 tree the impacts related to the different trustworthiness characteristics identified by

AIRMF (and implicit in the EU and CRFM proposals).

3.2 A cybersecurity risk analysis framework for

systems with AI components

The basic structure in the originating framework (Rı́os Insua et al., 2021b) essentially used

a single block to conceptualize a cyber organization. Given the relevance of AI components

as reflected in Section 2 challenges, here we structure organizations with finer granularity in

terms of blocks or components, which could refer to hardware, software or hardware-software

elements. This section provides a broad description of the cyber risk analysis framework and

then reflect on the AI ingredients (assets and defenses) included.

3.2.1 Structure

Consider a cyber organization structured according to access, security and criticality levels,

much as in the Purdue Model for Industrial Control Systems (Williams, 1994), represented

through blocks in levels as Figure 3 exemplifies. Let G be the underlying graph with nodes

representing blocks and links, flows through which an attack could enter or be transferred.
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Trustworthiness principles and subprinciples
Map to CSO Tree (Couce-Vieira et al., 2020)

Level 1 Level 2

Validitya

Accuracya: “closeness of results of observations,
computations or estimates to true values or values
accepted as being true.” e

Failing to achieve these characteristics involves a
degradation and maybe a malfunction or unavailability
of the AI system. These impacts may affect goals such
as operational costs, income reduction, other costs
(including non-compliance costs), reputational impact
or AI risk management costs.

Reliabilitya: “ability of an item to perform as
required, without failure, for a given time interval,
under given conditions.” e

Robustnessa,b: “ability of a system to maintain its
level of performance under a variety of circumstances.” e

Safetya,b: “property of a system such that it does not, under defined
conditions, lead to a state in which human life, health, property or
the environment is endangered.” e

Impacts on this characteristic affect goals related to harm
to people. Specifically, fatalities or injuries to physical
and mental health. Indirectly, it may also create economic
damage to persons, the organization and third parties.

Fairnessa,b

Bias is manageda,b: “systemic, computational, and
human [bias], all of which can occur in the absence
of prejudice, partiality, or discriminatory intent.” a

Impact on this characteristic may affect the reputation
impact goal (ethical degradation) and other costs
(non-compliance with AI regulation).

Diversitya,b: “reflect demographic diversity and broad
domain and user experience expertise.” a Impact on these characteristics may affect goals related

to injuries to personal rights, personal economic damage
and even injuries to physical and mental health.
These consequences may also impact the organization
in terms of reputation (ethical degradation) and costs.

Risk of discrimination is minimizedb,c: “based on
any ground such as sex, race, color, ethnic or social
origin, genetic features, language, religion or
belief, political or any other opinion, membership
of a national minority, property, birth, disability,
age or sexual orientation.” d

Securitya,b

Protectiona,b: protocols to avoid, protect against,
respond to, or recover from attacks.” a These characteristics are represented by the risk

management controls, affecting also the risk
management costs goal.

Resiliencea: “ability to return to normal
function after an unexpected adverse event.” a

AI Governance

Transparencya,b: “the extent to which information is
available to individuals about an AI system, if they
are interacting – or even aware that they are
interacting – with such a system.” a

Failing to achieve these characteristics involves a
reputational impact (ethical degradation) and may
include other costs for non-compliance.

Accountabilitya,b,c: “expectations of the responsible
party in the event that a risky outcome is realized.” a

Human oversightc: “natural persons can effectively
oversee the AI system during the period in which
the AI system is in use.” c

Understandability
Explainabilitya,b: “representation of the mechanisms
underlying an algorithm’s operation.” a Failing to achieve these characteristics involves a

degradation and maybe a malfunction or unavailability
of the function performed by the AI system. Impacts
on these may affect goals of the organization such as
operational costs, income reduction, other costs
(including non-compliance costs), reputational impact
or risk management costs.

Interpretabilitya,b: “the meaning of AI systems’ output
in the context of its designed functional purpose.” a

Data governanceb

Data managementc: “data collection, data analysis,
data labelling, data storage, data filtration, data
mining, data aggregation, data retention and any
other operation regarding the data.” c

Privacya,b: “safeguard human autonomy, identity
and dignity.” a

Privacy affects the goal of injuries to personal rights
and may include other costs for non-compliance.

References:
a NIST AI Risk Management Framework (NIST, 2023),
b CRFM’s On the Opportunities and Risks of Foundation Models (Stanford Center for Research on Foundation Models, 2021),
c EU AI Act (European Commission, 2021),
d Article 21 of the EU Charter of Fundamental Rights (used in c) (European Parliament et al., 2012),
e ISO/IEC TS 5723:2002 (used in a) (International Organization for Standardization, 2022).

Table 1: Mapping trustworthiness features into cybersecurity objectives. Indices in terms
identify references addressing the principle. Indices in definitions identify source.

G might be cyclic at a given level. This representation provides a flexible method to model

cyber systems including AI components.
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Example 1. Consider an organization structured according to six blocks B1, B2, ..., B6,

distributed along three levels (Figure 3).

Figure 3: Cyber organization structured according to 6 blocks in three levels.

According to it, a certain type of attack might enter through B1, B2 (level-1 blocks), or B3

(level-2 block). △

Formally, the parameters describing a system will be as follows, where, for the moment, we

assume there is just one type a of attack:

• The number k of levels.

• The number and name of blocks within each level




Level 1 B1, B2 · · · Bi1 i1 blocks,

Level 2 Bi1+1 · · · Bi2 i2 − i1 blocks,

...
...

...
...

Level k Bik−1+1 · · · Bik ik − ik−1 blocks.

Blocks within a level are numbered in an ascending manner (if a block precedes another

one, but not otherwise, its index is smaller). Importantly some of the blocks could refer

to AI-based assets, as we later reflect.
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• The entrance probabilities, that is the probabilities with which the attack will attempt

to enter through various blocks (some of them could be 0),

[ ]
P1 = p1, p2, · · · , pj, · · · pik of the attack entering just through block Bj,

P2 = [p12, p13, ..., p1ik , p23, · · · , p2ik , ..., pij, ..., pik−1,ik ] just through blocks Bi and Bj,

simultaneously

...[ ]
Pik = p12···ik simultaneously through all the blocks,

with
∑

i pi +
∑

i<j pij + ...+ p12···ik = 1. P will designate the union of P1, P2, . . . , Pik .

• Q = [qi], the probability of not protecting (PNP) block Bi from such type of external

attack, if attacked. Obviously, the probability of protecting it is 1− qi.

• For level s (s = 1, 2, . . . , k), Qs = [qij] contains the PNPs block Bi from block Bj

(where j is at level s or (s− 1)) if there is an attack following an information transfer

from Bj into Bi.

The q probabilities would refer to the type of defense considered, in particular to whether

they incorporate AI-based defense systems, as section 3.3 specifies.

Example 1 (cont). For the system in Figure 3, we would have

• Blocks Bi, i ∈ {1, 2, 3, 4, 5, 6} distributed in levels s ∈ {1, 2, 3}.

• p1, p2, p3: the probabilities of accessing the system just through one of the blocks B1,

B2, B3, (additionally, p4 = p5 = p6 = 0); p12, p13, p23: the probabilities of accessing the

system through just the pairs of blocks (B1, B2), (B1, B3), (B2, B3), respectively (the

remaining pij would be 0); p123: the probability of accessing simultaneously through B1,
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B2 and B3 (the remaining pijk would be 0). As mentioned,
∑3

i=1 pi+
∑

ij∈{12,13,23} pij +

p123 = 1.

• q1, q2, q3 are the block PNPs if they are attacked externally. qij, (i, j) ∈ {(1, 2), (2, 1),

(3, 1), (3, 4), (4, 1),(4, 2), (4, 3), (5, 3), (5, 4), (6, 3),(6, 4) } represent the PNPs of Bi

from block Bj. △

3.2.2 A risk analysis pipeline for AI based systems

Using the above structure, we provide algorithms to simulate the propagation of an attack

and its eventual impacts on an AI based system, and employ them to perform risk analysis.

Attack transit simulation Algorithm 1 simulates the transit of an attack within an

organization using the above structure. It outputs an indicator Ii for each block Bi, so that

Ii = 1 (0) if the block has (not) been successfully attacked. N
′
designates a sufficiently big

number (interpretable as the expected number of transits of the attack before detected or

before completing its function); if necessary, it may be replaced by parameter N
′

jh referring

to the transits between blocks j and h. N
′
or the N

′

jh would be generated randomly from

properly selected distributions, illustrated in the case study. Observe that if the graph is

acyclic, we would make N
′
= 1, there being just one transition.

Key points in the algorithm specification are:

• Step 2, simulating attack entry points. For a given facility with entrance probabilities

P , we generate one sample from a multinomial with such probabilities. A Dirichlet

distribution could be used to generate P , given the uncertainty about it.2 In principle,

this requires up to 2n − 1 probabilities, with n the number of identified single entry

points, a shortcoming from a storage point of view. A realistic way to mitigate this is

to assume that, with a certain probability, say generated from a beta distribution, the

2This distribution, as the others considered in this manuscript, would evolve as data accumulates.
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Algorithm 1 Attack transit simulation in a general facility
Input: G, P , Q, Qs

1: Ij = 0, ∀ block Bj

2: Given P , simulate the attacked entries and assign Ij = 1 to them.
3: Given Q, assign Ij = 0 to non-successfully attacked entries.
4: if all Ij = 0 then
5: Stop
6: else
7: for h ∈ {1, . . . , k} do ▷ Loop in level-depth
8: for u ∈ {1, . . . , N ′} do
9: for j ∈ {ih + 1, . . . , ih+1 − 1} do
10: if Ij = 0 then
11: Next j
12: else
13: for each successor h of block j do
14: if Ih = 0 then
15: if successor h successfully attacked from block j then
16: Ih = 1

17: Return: Ij, ∀ block j

attack is generic affecting all entry point blocks, whereas the remaining probability is

allocated equally to targeted attacks on the identified single entry points.

• Steps 3 and 15, simulate the success of an attack to a block, based on the PNP q of

such block from an attack. Typically q would be generated from beta distributions.

Section 3.3 discusses how to assess q, in particular for AI-based blocks.

Simulation and aggregation of impacts Algorithm 1 outputs a configuration (I1, . . . , Iik)

indicating the blocks affected by the attack. We next focus on the associated impacts simu-

lating them at block or system level, depending on the scenario modeled: some impacts will

be global (one impact for the whole system), whereas others will be separable (one impact

per block). Separable impacts are aggregated through a rule b. Finally, multiple impacts are

aggregated with a rule g.

Example 1 (cont). Recalling Section 3.1, suppose the incumbent type of attack may cause

the following impacts: financial (l1), equipment damage (l2), and downtime (l3). l1 is global,
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whereas l2 and l3 are separable. Typical aggregating details would be:

• l2. If l21 , . . . , l2ik are the corresponding equipment replacement costs (0 if no replace-

ment required), a plausible aggregation would be l2 =
∑

j l2j.

• l3. For aggregation purposes, multiply it by the cost of an hour of downtime for the

corresponding installation. If l31, . . . , l3ik are the downtimes, we would expect l3 =

max(l31, . . . , l3ik )× d,where d is the unit downtime cost.

Once the impacts are computed, we aggregate them through a rule l = g(l1, l2, l3) for example,

using a multi-attribute weighted value function g(l1, l2, l3) =
∑3

i=1wi × li, where wi weighs

the importance of the i-th impact, and even transform it through, say, a risk-averse utility

function (González-Ortega et al., 2018). △

At schematic level, simulating from the impact distribution based on (I1, . . . , Iik) would run

as in Algorithm 2, with the first L impacts assumed to be local and the remaining R − L,

global. The j-th impact, j = 1, ..., L would have its corresponding aggregation rule bj.

Algorithm 2 Simulation from impact distribution

Input: (I1, . . . , Iik)

1: l1, l2, ..., lR = 0
2: if max(I1, . . . , Iik) = 0 then
3: l = 0
4: else
5: for r ∈ {L+ 1, . . . , R} do
6: Generate lr
7: for h ∈ {1, . . . , ik} do
8: if Ih = 1 then
9: for j ∈ {1, . . . , L} do
10: Generate lhj

11: for j ∈ {1, . . . , L} do
12: Aggregate lhj with rule bj obtaining l

′
j

13: Aggregate the l
′
j’s and lr’s with rule g obtaining l

14: Return: l

This procedure generates a sample of impacts that serves as a basis to build the loss curves

required for risk management.
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General scheme for attack simulation Algorithm 3 simulates the consequences associ-

ated with a specific attack of a given type a. For such type, a stochastic process Λ generating

attacks in the required risk analysis planning period would be called upon. Then, its routine

would be invoked for each generated attack. There would be a stochastic process for each

type of relevant attack with its own parameters, and the corresponding generating routine

defining its arrival process. M would be the sample size required to estimate the different

quantities (expected costs, utilities) used below to the desired precision.

Algorithm 3 Attack simulation in a general facility

Input: G, Λ, distributions for P ,Q,Qs

1: for j ∈ {1, . . . ,M} do
2: Generate number N of attacks using Λ
3: for i ∈ {1, . . . , N} do
4: Generate P , Q, Qs

5: Simulate attack transit using P ,Q, Qs ▷ Algorithm 1
6: Simulate impact li from attack ▷ Algorithm 2

7: Aggregate lj =
∑N

i=1 li

8: Return: {lj}Mj=1

Risk assessment Once we have obtainedM samples from the impact distribution, we can

estimate

Probabilities. The Ij outputs are used to estimate the attack probabilities on various

blocks by just counting the number of 1’s appearing for each block and dividing by the

number M of simulation iterations. This facilitates assessing the vulnerability of each block.

Losses. The output {lj}Mj=1 is fit to a mixed-type distribution. Typically, it will have

a mass point at l = 0 and we would fit a density to the positive observations, through a

mixture of gamma distributions, for reasons outlined in Wiper et al. (2001). The estimated

model can be summarized through the probability of the zero part and the moments of the

positive part and quantities like the VaR or CVaR. If considered sufficiently risky, we would

proceed with risk management.
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Beyond the global loss at system level, it will typically be interesting to analyze component

losses at block level for the separable impacts to assess their contributions.

Risk management We next present an approach to risk management (RM) linked with

the methodology introduced and addressing these issues: includes the costs of the security

portfolio in the assessment; includes cyber insurance adoption as part of the risk management

process; caters for taking into account the organization’s risk attitude; introduces constraints

over portfolios; takes into account the uncertainty in portfolio evaluation due to sampling.

Let us formulate first the problem and then introduce a generic algorithm to solve it.

RM formulation Cyber mitigation portfolios will be characterized by a vector c =

(c1, ...., cm) with ci ∈ {0, 1, 2} indicating whether the i-th control: is (not) included in the

portfolio when ci = 1 (ci = 0); is already implemented when ci = 2. Some of the controls

might correspond to AI-based components; one of them could refer to a (cyber)insurance

product. To wit, an organization will typically have a few mitigations already implemented,

say the first r, that is c1 = . . . = cr = 2. Besides, for compliance reasons, some of the miti-

gations would be enforced, say from r+1 to s, so that the initial configuration is designated

c∗0 = (2, ..., 2, 1, ..., 1, 0, ..., 0). The aim is to decide which of the controls (cs+1, ..., cm) should

be implemented additionally. For this, given a proposed configuration c, we shall have the

corresponding entrance probabilities P (c) and PNPs
(
Q(c), Qs(c)

)
. A simulation routine as

in Algorithm 3 would provide a sample {l(c)j}Mj=1 of the loss if portfolio c is implemented.

Thus, the problem we aim to solve is

max E(u(c)) (1)

s.t. ci ∈ {0, 1, 2}; ci = 2, i ≤ r, ci = 1, r + 1 ≤ i ≤ s,

h(c) ≤ 0,
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where u is the utility function modeling preferences and risk attitudes, and h(c) ≤ 0 desig-

nates relevant constraints.

Concerning the objective function, we first integrate the portfolio cost(c) in the loss,

which adopts the form l(c) + cost(c), where cost(c) is typically based on the sum of the

included mitigation costs. Next, we adopt a constant absolute risk averse (CARA) utility

function (González-Ortega et al., 2018) whose form3 is u(c) = 1−exp(ρ(l(c)+cost(c))), with

ρ being the risk aversion coefficient. Two main types of constraints would refer to:

- Budget. Typically, there would be a constraint indicating the maximum budget C available

for cyber mitigation,
m∑
i=1

cost(ci) ≤ C,

where cost(ci) is the cost of the i-th mitigation. Splits between maintenance and implemen-

tation costs could be introduced. If ic represents the maximum implementation budget, the

constraint would be
m∑

i=r+1

ci × icost(i) ≤ ic.

Similarly, for mc representing the maximum maintenance budget, the constraint would be

m∑
i=1

sign(ci)×mcost(i) ≤ mc.

- Compliance with laws, standards, and frameworks may enforce certain mitigations to be

implemented, as mentioned above, entailing a reduction in the budgets available.

Implementation A first strategy would be to search the space of portfolios, find out

their corresponding probabilities P (c), Q(c), and Qs(c), obtain a sample from the loss l(c)

to estimate the expected utility of portfolio c, and optimize it, with the aid of a discrete

stochastic optimization method, see Powell (2019). This may become too cumbersome com-

putationally when the set of feasible portfolios is large.

3We aim at minimizing costs, therefore maximizing -costs.
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Alternatively, based on the typical form of the loss curves, Figure 6, we would assume

that the loss could be modeled as a mixture4

L(c) ∼ s(c)I0 +
(
1− s(c)

)
Gamma

(
a, t(c)

)
(2)

where s(c) represents the probability of no loss if c is the implemented portfolio and t(c)

adopts a specific parametric form to adapt to the shape of positive losses. For the i-th mitiga-

tion, we have its implementation (icost(i)) and maintenance (mcost(i)) costs and parameters

describing its effectiveness (αi, βi). The parametric forms that we adopt for s(c) and t(c)

are

s(c) = 1− s0 exp
(
−

( m∑
i=1

αi × sign(ci)
))
, t(c) = t0 +

m∑
i=1

βi × sign(ci),

suggesting diminishing returns in cybersecurity investments, whereas the corresponding costs

will be

cost(c) =
m∑

i=r+1

ci × icost(i) +
m∑
i=1

sign(ci)×mcost(i).

The objective is therefore to provide M samples (cost1, . . . , costM) from the cost and, corre-

spondingly, from the utility (u1, . . . , uM).

We include now the algorithms that implement the RM setup. First, Algorithm 4 es-

timates, for a given portfolio c, its expected utility, updating the parameters given the

implemented controls, in particular, including its implementation (ticost) and maintenance

(tmcost) costs.

4A similar procedure would be followed when the gamma distribution in (2) is replaced by a mixture of
gamma distributions.
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Algorithm 4 Compute expected utility

Input: c, s0, t0, α, β, a, M , ρ, mcost, icost

1: Compute tmcost and ticost
2: ancost = tmcost+ ticost
3: util = 0
4: for i ∈ {1, . . . ,M} do
5: if (c(i) = 1) OR (c(i) = 2) then
6: s0 = s0 × exp

(
− α(i)

)
7: t0 = t0 + β(i)

8: s = 1− s0
9: t = t0

10: for i = 1, . . . ,M do
11: Generate u ∼ U(0, 1)
12: if u < s then
13: cost(i) = 0
14: else
15: cost(i) ∼ Gamma(a, t)

16: cost(i) = cost(i) + ancost
17: util = util + (1− exp

(
ρ× cost(i)

)
)

18: Return: util/M

Algorithm 5 integrates the previous pieces. Given the portfolio, its feasibility is first assessed.

If feasible but not optimal, the portfolio is updated, where Algorithm * designates a generic

routine proposing a portfolio update for optimization purposes, see Powell (2019) for pointers

including simulated annealing.

Algorithm 5 Global scheme

1: Current c
2: Compute portfolio costs
3: if ”Infeasible Portfolio” then
4: Stop

5: while not convergent do
6: Compute portfolio costs
7: if “Infeasible Portfolio” then
8: Stop
9: else

10: Update s0 and t0 ▷ Algorithm 4
11: Estimate expected utility of portfolio ▷ Algorithm 4
12: Update c ▷ Algorithm *
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3.3 AI based defenses

The PNP parameters q assessing the non-protection of blocks against attacks are key model

inputs. They are characteristic of each defense type against a particular attack type in a

given environment. We may have data and/or use expert judgment (Hanea et al., 2021) to

estimate and update them in the light of data.

When handling AI systems that are safety components of products, as with content

filters or computer vision systems (Comiter, 2019), a major information source to assess the

parameters are their security evaluation curves. This is part of the relatively recent domain of

AML, see Biggio & Roli (2018); Vorobeichyk & Kantarcioglu (2019); Ŕıos Insua et al. (2023);

Gallego et al. (2023) for reviews. These curves depict the probability (1 − q) of succeeding

in protecting an ML algorithm from an attack of a certain type and intensity, given the

AI-based defense implemented. Hence, given a type of attack, its intensity and the chosen

defense, the parameter 1 − q would be estimated with the corresponding curve, from which

the PNP would be deduced.

As an example, Figure 4 illustrates the security evaluation curves of four ML defenses

(none, adversarial training (AT), adversarial logit pairing (ALP), adversarial risk analysis

(ARA)) over a classifier used in a computer vision task against a fast gradient sign method

(FGSM) (Szegedy et al., 2014) attack of increasing intensity. For a 0.06-intensity attack, the

estimated expected accuracy in the task would be around 0.93 (with ARA, AT and ALP

defenses) and about 0.87 with no defense and q̂ would be, respectively, 0.07 and 0.13. We

would complete the assessment acknowledging the uncertainty about the corresponding q̂

with a beta distribution with, e.g., such value as mode.

3.4 Targeted attacks

As Section 3.2 described, other key inputs are the attack probabilities pi to blocks Bi from

external sources for a given type of attack as well as the stochastic process generating such
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Figure 4: Security evaluation curve of a deep network for MNIST data under four defense
mechanisms (NONE, AT, ALP, ARA) against FGSM attack. From Gallego et al. (2023).

type of attacks. As in Section 3.3, we may have access to data and/or expert judgment which

allows us to model and estimate the corresponding probabilities and stochastic processes

parameters. Special emphasis should be placed on targeted attacks, since they entail strategic

calculations which further complicate the assessment of attack uncertainties. For this, we

appeal to ARA tools, overviewed in Banks et al. (2022), which require

1. Formulating the defender problem, that is, selecting a portfolio minimizing the po-

tential impact of attackers’ actions on our system. The uncertainties include whether

our system, taking into account the implemented portfolio, will be targeted or if, al-

ternatively, another system will be the focus. We also assess the uncertainties about

potential attack entry points.

2. Formulating the attackers’ decision problems, followed by gathering (typically partial)

information about the attackers’ beliefs and preferences, leading to his random proba-

bilities and random utilities from the defender’s perspective.

3. Simulating from the attackers’ problems to assess the attack probabilities and processes

over the system of interest. This entails sampling from their utilities and probabilities,
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and assessing their optimal attacks (type, target and, if our system is the target, entry

points). This is iterated as much as requested (and computationally feasible). Based

on this sample we assess the probability of receiving an attack at various entry points.

4. The inclusion of such forecasts in the defender’s problem (step 1), and its solution to

select the optimal protection portfolio.

Note that whether targeted attacks are automated through AI systems or manually would

make little difference in modeling terms and we would just need to assess if the capabilities of

the attacker enable it to implement more sophisticated AI attacks or whether it has sufficient

resources to hire an AI-based attacking platform. In this sense, the seemingly ever-increasing

availability of such platforms, as in AI-based Crime-As-A-Service (Kaloudi & Li, 2020),

increases the importance of developing this type of models.

Thus, a key issue in relation to targeted attacks is whether the system under study would

be the target of interest of a specific attacker for a given attack. The framework sketched

may be used to answer such type of questions based on the principle that a system would

be targeted if the attacker derives higher expected utility from attacking to it than to its

competitors (and from not attacking). As a byproduct, we also determine the entry point

probabilities. To wit, the scenario is modeled as a sequential defend-attack game (Ŕıos &

Ŕıos Insua, 2012), where we posit that attackers operate as expected utility maximizers

and that they possess knowledge of the implemented portfolio for system protection before

initiating any action. Assume that the attacker can perpetrate the following actions compiled

in set A:

- a1j,k, j ∈ {1, . . . , J}, k ∈ {1, . . . , K}: Attack of type j targeting the system’s k-th

(possibly multiple) entry, with J the number of attack types available, and K, the

number of relevant entry combinations. Our assumption is that the attacker will select

only one type of attack at any given moment (as opposed to employing multiple types

concurrently).
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- aij, j ∈ {1, . . . , J}, i ∈ {2, . . . , n}: Attack of type j targeting another system i, with

{2, . . . , n} encompassing all other targets that the potential attacker may choose.

The expected utility ψA when the attacker opts to target via a1(j,k) our system given portfolio

c is defined through

ψA(a
1
(j,k), c) = pA(Y = 1|a1(j,k), c)uA(Y = 1, a1(j,k), c) + pA(Y = 0|a1(j,k), c)uA(Y = 0, a1(j,k), c),

where pA(Y = 1|a1(j,k), c) denotes the probability that the attack successfully penetrates the

system, given c and the attack j targeting the k-th entry, and uA(Y = 1, a1(j,k), c) designates

the utility of a successful attack j targeting block k, given c, for the attacker. Given the

limited knowledge of the attacker’s utilities UA and probabilities PA, we opt for a Bayesian

approach leading to random utilities and probabilities, which make up for the attacker random

expected utility

ΨA(a
1
(j,k), c) = PA(Y = 1|a1(j,k), c)UA(Y = 1, a1(j,k), c) + PA(Y = 0|a1(j,k), c)UA(Y = 0, a1(j,k), c).

Similarly, from the defender’s perspective, the random expected utility when the attacker

targets the i-th system with attack aj is
5

ΨA(a
i
j) = PA(Y = 1|aij)UA(Y = 1, aij) + PA(Y = 0|aij)UA(Y = 0, aij).

Then, the random optimal action δ(c) selected by the attacker given c is the action maxi-

mizing the (random) expected utility argmaxx∈A(ΨA(x)). We proceed by Monte Carlo (MC)

to obtain the required probabilities. At each of V MC iterations v, we sample the random

utilities and probabilities and calculate δv(c) = argmaxx∈A(Ψ
v
A(x)). Using {δv(c)}Vv=1, we

estimate the predictive probability τ 1j (c) that the attacker targets our system through any

entry point perpetrating attack j, given c, through

5Note that we do not account for changes in defenses of other systems, recognising a lack of detailed
knowledge about the security status of the other systems.
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τ 1j (c) = PD(A = a1j,.|c) =
∣∣{δv(c) = a1j}

∣∣
V

and, similarly, for the probability τ i(c) of the attacker targeting any other system. Such

values are compiled in τ(c) = (τ 11 (c), . . . , τ
1
J (c), τ

i(c)). 6

Additionally, for each attack j we compute

Γ1
j(c) =

(
γ1j,1, . . . , γ

1
j,K

)
=

(∣∣∣{δm′ = a1j,1}Vv=1

∣∣∣+ 1, . . . ,
∣∣∣{δv = a1j,K}Vv=1

∣∣∣+ 1
)
,

denoting the MC simulations in which the attacker targets each entry with attack j. Γ1
j(c)

defines the parameter vector for the Dirichlet distribution to compute entry probabilities for

each attack j given portfolio c in step 2 of Algorithm 1, determining the distribution of entry

probabilities P (c).7

Algorithm 6 expands upon Algorithm 3 by incorporating the previous ARA based method

to simulate the impacts of targeted attacks in the system under analysis.

Algorithm 6 Targeted attack simulation in a general facility

Input: G, Λ, distributions for Q,Qs

1: Estimate attacker behaviour (τ) and target block (Γ1
j) parameter distributions

2: for j ∈ {1, . . . ,M} do
3: Generate number N of attacks using Λ
4: for i ∈ {1, . . . , N} do
5: Choose target using τ
6: if our system selected then
7: Generate Γ1

j , Q, Q
s

8: Simulate attack transit using Γ1
j , Q, Q

s ▷ Algorithm 1
9: Simulate impact li from attack ▷ Algorithm 2
10: else
11: Impact li = 0

12: Compute lj =
∑N

i=1 li

13: Return: {lj}Mj=1

6This vector serves as input to sample from a multinomial distribution to select whether the attacker
targets our system, and if so, which entry block is attacked.

7This implements Laplace smoothing (Manning et al., 2008), by adding 1 to each component of the vector,
to address the issue of null components when sampling from the Dirichlet distribution.
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It first obtains the vectors τ and Γ1
j , then used to compute the impacts of the attacks on

the system. We next simulate how many attacks the perpetrator will execute using the

arrival process distribution. Then, for each attack it is predicted whether or not the attacker

selects our system. If the attacker chooses our system, Γ1
j is used to select which block will

be targeted within the system. Subsequently, the impact on the system is computed using

Algorithms 1 and 2.

4 CASE STUDY

This section presents an illustration of the proposed methodology. It is a simplification of an

actual case but complex enough to reflect the required modeling steps. It concerns an ADS

fleet owner who uses them for rental purposes and wishes to improve their cybersecurity.

The key role of AI components in ADS architectures is described in Caballero et al. (2023).

Baylon (2017) provides a detailed analysis of cybersecurity issues in relation to ADS. Details

on the relevant parameters in this risk analysis over a one-year horizon planning may be

found in the Supplementary Materials (SM).

4.1 Problem description

Let us briefly describe the relevant elements of the problem. We first characterize the ADS

architecture through blocks and levels and specify the relevant impacts. Additionally, we

identify potential threats, distinguishing between non-adversarial and adversarial ones, rec-

ognizing their potential perpetrators. Finally, potential defenses not already implemented

are presented and we proceed to risk assessment and management.

ADS architecture. The simplified architecture (Figure 5) includes two level-one blocks

susceptible of external attacks.

• Perception system, covering sensors (RADAR, LIDAR, Vehicle-to-Vehicle (V2V),...)
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and processing subsystems allowing the ADS to determine its relative location with

respect to other cars, pedestrians, and obstacles.

• Location system, covering the systems (GPS,...) that estimate the vehicle global posi-

tion during operations.

Its architecture also includes a level-two block which cannot be attacked directly

• Decision/control system. Contains the AI applications processing data from previous

blocks to predict the behavior of nearby obstacles and decide appropriate speed and

direction to fulfill ADS needs.

Figure 5: ADS architecture. Three blocks and two levels.

Threats. We consider the following non-targeted and targeted threats.

Non-targeted threats. There is a large set of these threats against ADS (Taslimasa

et al., 2023). We consider only two of them.

• Denial of Service (DoS). Traffic infrastructure may be infected to gain access to vehicles

through interaction, to prevent users from entering their vehicles by intervening in their
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door-locking system demanding a ransom to regain access. Besides, attackers may also

obtain sensitive data from the location block.

• Software/hardware supply chain threats (SCTs). Rogue updates could make an ADS

non-operational. Importantly, such updates might not be assured beyond a deadline:

obsolescence may pose a threat in certain ADS scenarios (De Freitas et al., 2021).

Targeted threats. We consider the following actors as potential attackers:

• Cyberterrorist group (Cy). They could modify traffic signals or interfere with V2V and

V2I communications to achieve political notoriety.

• Criminal gang (Cr). They carry out their attacks to obtain economic gains through

stolen sensitive information.

These groups may target the ADS through different attacks. We only consider:

• Adversarial attacks against ML algorithms (AML at). A perpetrator decides to alter

the data plane of vehicular communications or environmental elements to fool the ADS

ML algorithms. For instance, they might modify traffic signals (Wei et al., 2023) to

trick the perception block and maliciously perturb vehicle behavior.

• Wireless jamming on the control plane (wir jam). A malicious actor could send signals

to interfere with the proper functioning of devices such as the GPS system, potentially

causing accidents and damage to vehicles and users.8

Table 2 summarizes the attacks that actors are capable to carry out. We assume that

attackers can execute only one type of attack at any given moment.9

Besides, two other companies in the market offer similar services.

8An interface posing a threat to the vehicle is the charging infrastructure for electric cars (Köhler et al.,
2023).

9This assumption is only relevant for the cyberterrorist group since, unlike the criminal gang, it has the
capability to execute both types of attacks.
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Attacks/Attacker Cyberterrorist group Criminal gang
AML at X X
wir jam X

Table 2: Attacks available to malicious actors.

Impacts Following Section 3.1, the owner considers three relevant impacts in this case.

• Financial. They encompass all costs related to loss of sensitive information, including

that relevant to ADS users or the rental company. A related current and increasing

risk derives from the complexity of the legal ecosystem associated with ADS liability.10

Assessed in thousands of euros.

• Equipment damage. This refers to harm inflicted on any ADS component. Taking into

account the importance of software in these vehicles, it would be necessary to consider

all threats derived from firmware (Halder et al., 2020) and software management (see

ISO/IEC AWI 5888, ISO 24089:2023). Assessed in thousands of euros.

• Downtime, the time the ADS is unavailable due to an attack, measured in hours.

Table 3 displays the impacts induced by different types of attacks.

Attacks/Impacts Financial Equipment damage Downtime
AML at (Cy) X X X
AML at (Cr) X X
Wireless jam. X X X

DoS X X
SCTs X X X

Table 3: Impacts deemed relevant for targeted and untargeted threats.

Defenses The defenses considered for risk management purposes not yet implemented in

the ADS are: a firewall and internet gateway (FwGw); a robust AML module (AML); and,

a patch management, IDS and vulnerability scanner (PmVs). Table 4 displays the defences

that are effective against various types of attacks.

10See the outcomes from UNECE W29: https://unece.org/wp29-introduction
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Attacks/Defenses FwGw AML PmVs
Adversarial attack X
Wireless jamming X X

DoS X X
SCTs X X X

Table 4: Defense effectiveness and costs.

Cyber insurance options are also available. Two products are considered: a basic one (A)

covering equipment damage occurring to the vehicle and an advanced one (B) that, addi-

tionally, covers costs related to downtime. Table 5 displays which impacts are mitigated by

each cyber insurance product.

Finan.
Equip.
damage

Downt.

A X
B X X

Table 5: Impacts mitigated by each cyber insurance product and its cost.

Constraints The maximum protection budget is 3400 euros. Legislation requires at least

a type A cyber insurance product to be included at the minimum.

4.2 Risk analysis

This section focuses on evaluating the risk associated with the system within its initial

configuration (absence of new protections and insurance product A). We apply the framework

detailed in Sections 3.2.2 and 3.4, utilizing the parametric setup outlined in the SM. The

objective is to identify the portfolio that displays the highest efficacy in mitigating the risks

within the system.

Risk assessment. Figure 6 (dark blue line) illustrates the resulting loss curve in euros

(logarithmic scale) with the initial configuration, obtained with an MC sample size of 10,000.

The probability of experiencing no loss is zero, and positive losses are approximated through
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a gamma distribution. From this distribution, we obtain a 95% VaR at 1.32 and a 95%

CVaR at 1.498 million euros. Given that the risk is considered too high, we proceed on to

determine the best security portfolio through a risk management stage.

Risk management. Consider now the RM problem with parameters as in the SM. Only

12 portfolios out of 16 are feasible. As this number is small, it is reasonable to undertake the

evaluation of all 12 of them. 11 Their expected utilities are assessed by MC as in Algorithm

4. In principle, we use ρ = 10−7 as risk aversion coefficient and, again, an MC sample size

of 10000. Table 6 presents the three best portfolios together with their expected loss, cost,

and utility. The optimal portfolio consists of adopting Insurance A and installing the AML

and PmVs modules; the second best is (B, FwGw, AML), whereas (A, FwGw, AML) is the

third preferred portfolio.

Portfolio Expected loss Cost Expected Utility
A,AML,PmV s 22834.59 2300 -0.0025
B,FwGw,AML 43918.99 2950 -0.0047
A,FwGw,AML 48185.75 1800 -0.0050

Table 6: Three best portfolios.

Figure 6 (red) displays the predictive loss curve for the best portfolio. Observe that the

probability of zero loss with the optimal portfolio is 0.174. The positive part is fit with

one gamma component. The 95% Var and 95% CVaR would be 59520 and 72756 euros,

respectively. Observe, therefore, the significant risk reduction attained when implementing

the selected portfolio, achieving a high level of protection given the budget available.

We performed extensive sensitivity analysis to assess the robustness of the output to

various parameters. In particular, we considered sensitivity to the risk aversion coefficient ρ

by varying it within a grid in the range [10−7, 10−3]. The same optimal portfolio is preserved

with only a switch between the second and third portfolios, as ρ gets bigger than 10−4,

suggesting robustness of the response.

11It takes about 10 minutes in a standard laptop.
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Figure 6: ADS risk assessment loss curves on a logarithmic scale for initial (blue) and optimal
(red) portfolio configurations.

5 DISCUSSION AND OPEN ISSUES

Motivated by the EU AI Act, the NIST AIRMF and the CRFM report, we have described

new cybersecurity risk analysis issues that emerge in systems with AI components. In par-

ticular, we described the challenges that this technology brings in regarding assets, impacts,

controls, and targeted attacks and provided a broad framework for their risk analysis. Under

the proposed approach, we structure a system through blocks in different levels, with links

indicating potential attack transit flows through information or transaction exchanges. We

also introduced a scheme to simulate an attack transit within the system, allowing us to

obtain risk indicators and modeled the problem in which risk mitigations to be added to a

security portfolio have to be selected, including cyber insurance, to minimize system risks,

as illustrated with a case referring to ADSs.

Several measures have been developed recently to treat the safety, ethical, bias, privacy

and fairness threats that are becoming of major concern in the AI domain, including, for in-

stance, mechanisms to enforce anti-discrimination policies, privacy controls or the monitoring

of sensitive content to ensure safety. Although these are not exactly cybersecurity controls,
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they can be actually integrated into our framework. The decision-support process regarding

their selection would be similar, aggregating them as procedural, technical, or physical con-

trols against unwarranted actions. This can be used in a broader risk analysis process that

includes not only cybersecurity, but also safe and fair uses of the AI system of interest.

Beyond as a risk analysis framework, we may use our risk assessment proposal to de-

termine where at the EU AI Act four tier risk ladder a system is. In particular, we could

study how vulnerable a system is and map its derived risks to one of the tiers, understanding

whether it is only advisable to implement additional security controls. The proposed method-

ology is flexible enough to cover the impacts, attacks, and defenses for AI components besides

constraints over the mitigations in relation to compliance with laws or standards. This flex-

ibility contributes to defining a robust framework to integrate advanced risk analysis and

protection methods for AI applications, but also to support certification programs as de-

manded in the EU Cybersecurity and Cyber-resilience Acts (Cihon, 2019). It may be used as

well in a proactive manner by checking the impact of protection measures over the assessed

risk through a what-if type of analysis.

As our case study shows, admittedly our proposed framework is rather technical and

demands intensive modelling work. However, the values at stake are so important that

the extra effort should be definitely worth it when compared to the simplistic approaches

emerging in the field as replicas of major cybersecurity risk analysis standards. To facilitate

its implementation a system could be developed, possibly adopting the ENISA terminology

set up in Papadatos et al. (2023), extended with the novel AI ingredients reflected in this

document. Importantly, most of these ingredients will be common across many systems

and their corresponding distributions will be similar for blocks with the same structure and

configuration, thus alleviating elicitation tasks and allowing the development of templates of

blocks and distributions.

An additional aspect of AI product protection is the inclusion of security as well as other

risk-related objectives (e.g., privacy, safety, fairness) in their design and development. Our
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framework could be used to address the selection of secure or other risk-related features in

the design of AI based systems, thus embedding a security-by-design approach matching the

efforts in securisation and riskification (Backman, 2023) in the context of AI and cybersecu-

rity.
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SUPPLEMENTARY MATERIALS:

PARAMETRIC SETUP

This appendix outlines the models and parameters adopted in the proposed scenario. We

first introduce the notation used as well as some general considerations concerning ADS.

Then, we indicate the distributions modeling the attacks that might affect the system.

A.1 Notation and general considerations

Portfolio. To simplify the notation, we do not include the insurance products in c. Thus,

portfolios c will have the structure (FwGw, AML, PmV s), with FwGw, AML, and PmV s

being 1 if the corresponding control is implemented and 0, otherwise. Thus, the initial

portfolio will be (0, 0, 0). Additionally, we include only portfolios relevant to handle the

corresponding attack. For instance, when referring to DoS attacks, the AML module is not

included in the portfolio as it offers no protection against such threat. The implementation

costs of the controls are, respectively, 1250 e(FwGw), 300 e (AML) and 1750e (PmVs).12

Access probabilities. The probability that an attack uniquely accesses the system through

the perception (location) block is denoted pP (pL). The access probability through both

blocks, pP,L.

Non-protection probabilities. qP (qL) refers to the PNP of the perception (location)

system from an external attack. qD,P (qD,L) designates the PNP of the decision-making

block from the perception (location) block.

Impacts. Denote by lFI the financial impact of an attack on the system; lED, the equipment

damage impact, and lDT , the downtime impact. We assume that the rental car company

12Costs and other parameters derived from public sources or extracted from one expert in cybersecurity
and one expert in financial planning in the team, using standard expert judgement elicitation techniques
(Hanea et al., 2021). For a few representative parameters, we comment some of their implications.
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experiences a cost of 100 euros for each downtime hour of a single ADS. l(c) indicates the loss

when portfolio c is implemented. lFI is a global impact, whereas lDT and lED are separable:

we denote lij with i ∈ {ED,DT} and j ∈ {L, P,D} as the i-th impact on the j-th block. lFI ,

lDT , and lED will be sampled from Gamma distributions.13 Their parameters are detailed in

subsequent sections, and we apply aggregation rules from Section 3.2.2.

Insurance products. Product A reduces the economic impact over equipment damage

by 65%. If product B is purchased, 70% of the total expenses resulting from equipment

damage and downtime will be covered. Table 7 displays the costs of the insurance products

on an ADS depending on adopted portfolio. Since these products have no effect on access

(0,0,0) (1,0,0) (0,1,0) (0,0,1) (1,1,0) (1,0,1) (0,1,1) (1,1,1)
A 600 500 500 500 250 250 250 150
B 1800 1600 1600 1600 1400 1400 1400 1000

Table 7: Prices in euros of insurance on an ADS depending on portfolio.

and non-protection probabilities, when referring to these probabilities, we do not differentiate

depending on the product considered, as they will remain the same regardless of the insurance

adopted.

A.2 Non-targeted attacks

This section discusses the distribution and parameters used to model non-targeted attacks

that may potentially threaten the ADS system. We model the arrival process, access and

protection probabilities, and the impact of specific attacks, given the portfolio.

A.2.1 Denial of Service attack features

Let us specify the distributions modeling the relevant parameters when the ADS is affected

by a DoS attack.

13For continuous non-negative quantities assumed to be unimodal, we use Gamma distributions for flexi-
bility reasons as they adopts a wide variety of locations and asymmetries contingent on their parametrization
(Papoulis & Unnikrishna Pillai, 2002) Gamma(a, p) with mean a× p.
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Arrival process. The number of potential DoS attacks within a one-year horizon is mod-

eled through a Poisson distribution with mean 32.14

Access probabilities. As stated, regardless of portfolio c, we assume the same distribution

for (pP (c), pL(c), pP,L(c)). These probabilities are sampled from a Dirichlet Dir(4, 8, 1)

distribution, as the location system is more prone to being attacked through a DoS attack

than the perception system. Such type of attack is more likely to occur through the V2I

system via an infected fixed element, say traffic light, than through a component of the

perception system. We posit an attack occurring through both blocks as less likely, since it

would entail a more complex and elaborate attack.

Non-protection probabilities. We detail now the PNPs given the portfolios.

• None. We assume that qP (0, 0, 0) ∼ Beta(27, 3). Among other things, this entails that

the expected probability of not protecting the perception system when no additional

measures are introduced is 27/(27 + 3). Similarly, assume qL(0, 0, 0) ∼ Beta(26, 3),

qD,P (0, 0, 0) ∼ Beta(25, 3) and qD,L(0, 0, 0) ∼ Beta(24, 3).

• FwGw.When FwGw is implemented, PNPs are distributed as qP (1, 0, 0) ∼ Beta(5, 65),

qL(1, 0, 0) ∼ Beta(4, 65), qD,P (1, 0, 0) ∼ Beta(3, 65) and qD,L(1, 0, 0) ∼ Beta(2, 65).

This entails e.g. that the expected probability of not protecting the perception system

when FwGW is implemented is 5/(5 + 65), thus importantly improving security against

such threats.

• PmV. The PNPs when a PmV is used are assessed as qP (0, 0, 1) ∼ Beta(5, 95),

qL(0, 0, 1) ∼ Beta(4, 95), qD,P (0, 0, 1) ∼ Beta(3, 95) and qD,L(0, 0, 1) ∼ Beta(2, 95).

• FwGw, PmVs. When both protection measures are implemented, the PNPs are mod-

eled as qP (1, 0, 1) ∼ Beta(5, 125), qL(1, 0, 1) ∼ Beta(4, 125), qD,P (1, 0, 1) ∼ Beta(3, 125)

14Based on the number of organizations in the transportation sector reported to have fallen victim to DoS
attacks in the USA during 2022 (Federal Bureau of Investigation, 2022).
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and qD,L(1, 0, 1) ∼ Beta(2, 125).

Impacts. The impacts of a DoS attack depend on the implemented defense.

• Financial. All financial impacts are modeled using Gamma distributions in Keuros.

– None. The impacts when no additional countermeasure is introduced would be

modeled as lFI(0, 0, 0) ∼ Gamma(7, 3) Keuros. This implies, for example, that

the expected output is 21 Keuros.

– FwGw. The impacts would follow lFI(1, 0, 0) ∼ Gamma(6, 3) Keuros.

– PmVs. The impacts are modeled as lFI(0, 0, 1) ∼ Gamma(4, 3) Keuros.

– FwGw, PmVs. If both defenses are implemented, impacts are modeled as lFI(1, 0, 1) ∼

Gamma(3, 3) Keuros.

• Downtime. The distributions that model the impact on each component are:

– None. Assume lDTP
(0, 0, 0) ∼ Gamma(14, 2), lDTL

(0, 0, 0) ∼ Gamma(15, 2) and

lDTD
(0, 0, 0) ∼ Gamma(18, 3) hours. For instance, for the perception block, this

entails that the expected downtime is 28 hours.

– FwGw. The distributions are lDTP
(1, 0, 0) ∼ Gamma(12, 2), lDTL

(1, 0, 0) ∼

Gamma(13, 2) and lDTD
(1, 0, 0) ∼ Gamma(16, 3) hours.

– PmVs. In this case, impacts are distributed as lDTP
(0, 0, 1) ∼ Gamma(9, 2),

lDTL
(0, 0, 1) ∼ Gamma(10, 2) and lDTD

(0, 0, 1) ∼ Gamma(13, 3) hours.

– FwGw,PmVs. The impacts would be distributed as lDTP
(1, 0, 1) ∼ Gamma(8,

2), lDTL
(1, 0, 1) ∼ Gamma(9, 2) and lDTD

(1, 0, 1) ∼ Gamma(12, 3) hours.

A.2.2 Software/hardware supply chain threat features.

This section presents the models associated with a software/hardware SCT attack.
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Arrival process. The annual number of potential attacks resulting from supply chain

threats follows a Poisson distribution with parameter 2.75.15

Access probabilities. Consider equally likely that a perpetrator will target either of the

two entry points and less likely that it will attack both simultaneously. As a result, (pP (c),

pL(c), pP,L(c)) are modelled as Dir(5, 5, 1). It is assumed that the attacker faces the same

difficulty level in accessing the system through a component regularly updated in the per-

ception system, such as the V2V, or in the location block, such as the GPS. Otherwise, we

assume it is less likely that it will be attempted to access the system through an update that

affects components in both entry blocks, as it would require a much more elaborate attack.

Non-protection probabilities. Table 8 displays the parameters of the Beta distributions

employed to model PNPs given the implemented portfolio.

Portfolio qP qL qD,P qD,L

(0,0,0) (35,3) (33,3) (32,3) (31,3)
(1,0,0) (5,10) (4,10) (3,10) (2,10)
(0,1,0) (5,45) (4,45) (3,45) (2,45)
(0,0,1) (5,30) (5,30) (3,30) (2,30)
(1,1,0) (5,75) (4,75) (3,75) (2,75)
(0,1,1) (5,105) (4,105) (3,105) (2,105)
(1,0,1) (5,90) (4,90) (3,90) (2,90)
(1,1,1) (5,125) (4,125) (3,125) (2,125)

Table 8: SCT PNP distribution parameters depending on portfolio.

Impacts. Table 9 quantifies the financial impacts (lFI , lED,lD) of an SCT through the

specified Gamma distributions.

15Derived from reported number of accidents associated with models from a specific brand by the Na-
tional Highway Traffic Administration (NHTSA) when employing an Advanced Driver Assistance System
(ADAS) https://static.nhtsa.gov/odi/inv/2021/INOA-PE21020-1893.PDF, presuming that an attacker
could exploit the same vulnerability in the vehicle software at a similar rate.
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Portfolio lFI
lED lD

P L D P L D
(0,0,0) (10,2) (9,2) (8,2) (10,2) (17,2) (14,2) (16,2)
(1,0,0) (8,2) (8,2) (7,2) (9,2) (12,2) (11,2) (13,2)
(0,1,0) (6,2) (6,2) (5,2) (7,2) (10,2) (9,2) (11,2)
(0,0,1) (7,2) (7,2) (6,2) (8,2) (11,2) (10,2) (12,2)
(1,1,0) (3,1) (4,2) (3,2) (5,2) (4,2) (5,2) (6,2)
(0,1,1) (2,1) (3,2) (2,2) (4,2) (3,2) (4,2) (5,2)
(1,0,1) (4,1) (5,2) (4,2) (6,2) (5,2) (6,2) (7,2)
(1,1,1) (1,1) (2,1) (1,1) (3,1) (1,2) (2,2) (3,2)

Table 9: Impact distribution parameters of SCTs depending on portfolio.

A.3 Targeted attacks

This section delves into modeling specifics of targeted attacks, therefore requiring the assess-

ment of attackers’ motivations to determine whether it is advantageous for the attackers to

target the system under study, as Section 3.4 explained. We thus provide details to construct

the attackers utility functions, taking into account the corresponding uncertainties as well

as the attack arrival processes and success probabilities. Subsequently, we discuss distribu-

tions to describe PNPs and attack impacts. The chosen distributions will reflect that the

cyberterrorist group is better skilled than the criminal gang.

A.3.1 Attacker utility functions

This section outlines the construction of the attackers utility functions, first discussing their

generic objectives, then the parametric form adopted and finally delving into the uncertainties

about their preferences and behavior.

Attackers objectives. The attackers may pursue the following objectives:

• Maximizing notoriety nt. An attacker strives to gain influence to be later used in search

of geopolitical objectives.

• Minimizing detection costs cd. These are the costs associated to the attacker being
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identified, including economic sanctions and/or legal condemnation, which could even

lead to their disappearance.

• Maximizing the sensitive information s obtained. This refers to the quantity of relevant

data (valuable business information, customers’ personal data,...) that an attacker

illicitly obtains to sell for an economic gain.

The cyberterrorist group wants to maximize its notoriety. The criminal gang aims to steal

as much sensitive information as possible. Both attackers aim to minimize detection costs.

The costs of implementing wireless jamming or AML attacks are negligible; thus, attackers

will not consider the implementation expenses involved in carrying out such cyberattacks.

Utility parametric form. Assume the attackers preferences are modelled with the fol-

lowing piecewise risk-prone utility function

uA(y, a, c) = exp(hA × (y × π − cd)),

with y representing the success of the attack (1, if successful; 0, otherwise), π denoting the

variable that each attacker aims to maximize (πCy = nt, πCr = s), and hA the risk proneness

parameter. The defender’s lack of knowledge about the attacker’s preferences leads to the

random utility model

UA(y, a, c) = exp(HA × (y × Π− Cd))

where Π and Cd designate the random variables incorporating the uncertainties over the

attacker’s objectives. Assume HA ∼ U(1× 10−6, 2× 10−6) models the uncertainty about the

risk proneness (for both adversaries).
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Specificities for cyberterrorist group

Notoriety modeling. As a proxy for notoriety, we aggregate the financial impact and

number of deaths that the attacker is predicted to cause with an attack, that is, we use

nt = lAFI+ l
A
FA×V SL, where lAFI represents the financial impacts that the attacker anticipates

causing to the targeted ADS and lAFA is the number of deaths expected by the attacker,

and V SL is the value of statistical life (VSL), equivalent to 6 million euros.16 We assume

lAFI ∼ Gamma(ω × 8, ω × 3) and lAFA ∼ Poisson(ω × 25). Table 10 displays the value of ω

depending on whether the cyberterrorist group makes a wireless jamming or AML attack

and the implemented portfolio. For instance, when no defenses are implemented (c=(0,0,0)),

the expected financial impacts for wireless jamming are 0.8 × 8 × 3 = 19200 euros, and the

expected number of deaths is 0.8 × 25 = 20. Acknowledging the lack of information about

Portfolio AML at wir jam
(0,0,0) 1 0.8
(1,0,0) 1 0.6
(0,1,0) 0.2 0.8
(0,0,1) 1 0.4
(1,1,0) 0.2 0.6
(0,1,1) 0.2 0.4
(1,0,1) 1 0.2
(1,1,1) 0.2 0.2

Table 10: Values of parameter ω for different portfolio configurations and attacks.

the other companies, we assume that lAFI ∼ Gamma(7.2, 2.7) and lAFA ∼ Poisson(22.5) for an

AML attack when targeting the other companies. Similarly, in the case of a wireless jamming

attack to other companies, we assume lAFI ∼ Gamma(5.6, 2.1) and lAFA ∼ Poisson(17.5).

Detection costs and probability. Denote by pdet(1,j,k) the detection probability of at-

tack j targeting block k of our ADS, and pdet(i,j), the detection probability of attack j tar-

geting company i’s ADS, i = 2, 3. We assume for the AML attack that pdet(1,AML at,k) ∼
16Based on the VSL for Spain (Viscusi, 2020) and an exchange rate euro-dollar of 0.9. VSL estimates

changes in mortality risk in monetary terms. The term VSL is easily misinterpreted as the financial value of
a person’s life (Cameron, 2010); however, there is still no consensus on rewording (Freeman III et al., 2014).
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Be(2, 998), k ∈ {L, P} and pdet(1,AML at,(L,P )) ∼ Be(1, 99). Regarding the wireless jamming

attack, pdet(1,wir jam,k) ∼ Be(1, 999), k ∈ {L, P} and pdet(wir jam,(L,P )) ∼ Be(5, 995). Acknowledg-

ing the lack of information about the other companies, we assume that pdet(i,j) ∼ Be(6, 994),

i ∈ {2, 3}, j ∈ {AML at, wir jam}. If either of the two attacks is detected, costdet will

be modeled as U(100000, 130000). We then compute the expected detection costs cd as

pdet(1,j,k) × costdet or p
det
(i,j) × costdet depending on the targeted system.

Specificities for criminal gang

Sensitive information modeling. Let vs be the value of a data record containing

sensitive information and Ns, the count of stolen data records. The gain from selling stolen

sensitive information will be Ns × vs. To account for uncertainty, the value of a data record

is modelled as vs ∼ U(0.8× 100, 1.2× 100). To estimate the number of data records stolen in

a successful attack, consider that Ns ∼ U(0, ftrecords), being ftrecords = 660 with the default

portfolio and ftrecords = 360 when the AML is implemented. Recognizing the absence of in-

formation on the other companies, we assume that ftrecords = 600 when the other companies’

vehicles are attacked.

Detection costs and probability. It is considered that pdet(1,AML at,k) ∼ Be(3, 997),

k ∈ {L, P}, pdet(1,AML at,(L,P )) ∼ Be(5, 995) and pdet(i,AML at) ∼ Be(4, 996). Detection costs are

modeled as costsdet ∼ U(100000, 130000). As with the cyberterrorist group, these values are

employed to calculate the expected costs cd as pdet(AML at,k) × costsdet or p
det
(i,AML at) × costsdet,

i = 2, 3.

A.3.2 Attack arrival process and success probability

Arrival process. We model the attack arrival process from potential attackers through

Poisson processes with parameters determined using expert knowledge. In particular, for the

cyberterrorist group, the number of potential attacks within a one-year period is modelled
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using Poisson process with rate 4; for the criminal gang, the Poisson rate is 3.

Successful attack probabilities. We assess the attackers’ beliefs that an attack is suc-

cessful given a certain portfolio. When the cyberterrorist group conducts an AML attack:

• When no defense is applied PA(Y = 1|a1(AML at,P ), (0, 0, 0)) ∼ Be(75, 25), being PA(Y =

1|a1(AML at,P ), (0, 0, 0)) the probability that the attack is successful when the attacker

launches an AML attack to block P of the system, given that the portfolio (0,0,0) has

been implemented. Similarly, PA(Y = 1|a1(AML at,L), (0, 0, 0)) ∼ Be(75, 25),

PA(Y = 1|a1(AML at,(P,L)), (0, 0, 0)) ∼ Be(90, 10). We assume the probability of suc-

cessful attack is higher when both entries are attacked, despite of being more easily

detected.

• When the AML protection is implemented PA(Y = 1|a1(AML at,P ), (0, 1, 0)),

PA(Y = 1|a1(AML at,L), (0, 1, 0)) ∼ Be(15, 85),PA(Y = 1|a1(AML at,(P,L)), (0, 1, 0)) ∼

Be(10, 90).

As the previous distributions show, implementing a defensive measure not only reduces the

PNPs, but would also act as a deterrent for the attacker, since the attacker’s beliefs over a

successful attack decreases. Security curves, Figure 4, can be used to determine the distribu-

tion parameters. In turn, Table 11 displays the parameterization when the attacker carries

out a wireless jamming learning attack.

Portfolio P L P,L
(0,0,0) (60,40) (60,40) (70,30)
(1,0,0) (25,75) (25,75) (35,65)
(0,0,1) (25,75) (25,75) (35,65)
(1,0,1) (5,95) (5,95) (15,85)

Table 11: Successful attack probability beta parameters of wireless jamming conducted by
the cyberterrorist group regarding the targeted block.

Recognizing a lack of information, we model the attack probability of the cyberterrorist group

on a company i’s vehicle as PA(Y = 1|aij) ∼ Be(1, 1), i ∈ {2, 3}, j ∈ {AML at, wir jam},
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under the current status.

Similarly, Table 12 shows the parameters of the beta distributions modeling the probabil-

ities of a successful AML attack carried out by the criminal gang, given the portfolio imple-

mented regarding the targeted block. As before, we model the probabilities of a successful

AML attack on vehicles from other companies as PA(Y = 1|aiAML at) ∼ Be(1, 1), i = 2, 3.

Portfolio P L P,L
(0,0,0) (65,35) (65,35) (80,20)
(0,1,0) (15,85) (15,85) (25,75)

Table 12: Successful attack probability beta parameters of AML attack conducted by criminal
gang regarding the targeted block.

A.3.3 Computation of attack probabilities

To estimate the attack probabilities for each attacker, we conducted 10000 simulations using

the previously outlined modeling details to derive vectors τ(c) and Γ1
j(c), as explained in

Section 3.4. In particular, for the cyberterrorist group case, we assess the probability of

implementing one of the following actions:

- [1-3] AML attack targeting the location block, perception block, or both (a1AML at,k).

- [4-7]Wireless jamming targeting the location block, perception block or both (a1wir jam,k).

- [8-9] AML attack to vehicles of other company (aiAML at, i = 2, 3).

- [9-10] Wireless jamming targeting vehicles of other company (aiwir jam, i = 2, 3).

A similar analysis for the criminal gang was performed.

A.3.4 Non-protection probabilities

This section describes the modeling details for parameters related to PNPs when the system

is subject to a targeted attack. Note that the selection of PNPs for AML defenses can be

accomplished through an analysis using security curves similar to those depicted in Figure 4.
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Cyberterrorist group. Table 13 shows the Beta distribution parameters modeling the

PNP for each defense when an AML attack is perpetrated. For instance, the parameters for

qp associated with the portfolio (0, 0, 0) indicate that the expected PNP is 72/(72+3) for an

AML attack conducted by the cyberterrorist group targeting the perception block.

Portfolio qP qL qD,P qD,L

(0,0,0) (72,3) (73,3) (74,3) (75,3)
(0,1,0) (5,195) (4,195) (3,195) (2,195)

Table 13: Cy AML PNP distribution beta parameters depending on portfolio.

Analogously, Table 14 displays the corresponding parameters in the event of an attack

through wireless jamming.

Portfolio qP qL qD,P qD,L

(0,0,0) (8,3) (9,4) (10,3) (11,3)
(1,0,0) (5,60) (4,60) (3,60) (3,60)
(0,0,1) (5,95) (4,95) (4,90) (3,90)
(1,0,1) (5,115) (4,115) (3,115) (2,115)

Table 14: Cy wjam PNP distribution beta parameters.

Criminal gang. Table 15 shows the Beta distribution parameters modeling the PNP for

each defense against an AML attack.

Portfolio qP qL qD,P qD,L

(0,0,0) (16,5) (15,5) (22,5) (20,5)
(0,1,0) (5,245) (4,245) (3,245) (2,245)

Table 15: Cr AML portfolio dependent PNP beta parameters.

A.3.5 Attack impacts

Concerning the impact of targeted attacks, we discern when the system is targeted between

attacks originating from a cyberterrorist organization or a criminal gang, as cyberterrorists

are assumed to be more skilled.
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Cyberterrorist group. Table 16 displays the parameters of the Gamma and Poisson

distributions modelling the impacts of adversarial attacks perpetrated by a cyberterrorist

group, both with and without AML protection in place.

Portfolio lFI
lED lD

P L D P L D
(0,0,0) (12,2) (6,2) (7,2) (6,3) (30,2) (36,2) (45,2)
(0,1,0) (2,2) (1,2) (1,2) (1,3) (2,2) (3,1) (4,2)

Table 16: Portfolio dependent impact distribution gamma parameters of AML attack by
cyberterrorist.

Similarly, Table 17 shows the parameters of the distributions modelling the impacts caused

by a wireless jamming attack.

Portfolio lFI
lED lD

P L D P L D
(0,0,0) (13,2) (4,2) (4,2) (5,2) (22,2) (21,2) (23,2)
(1,0,0) (6,2) (3,2) (3,2) (4,2) (16,2) (15,2) (17,2)
(0,0,1) (3,2) (2,2) (2,2) (2,2) (9,2) (8,2) (10,2)
(1,0,1) (1,1) (1,2) (1,2) (1,2) (2,2) (2,2) (3,2)

Table 17: Portfolio dependent impact distribution gamma parameters of wireless jamming
conducted by cyberterrorist group.

Criminal gang. Table 18 displays the distribution parameters of the impacts of an AML

attack carried out by a criminal gang.

Portfolio lFI
lED

P L D
(0,0,0) (10,2) (5,2) (5,2) (4,2)
(0,1,0) (2,2) (1,2) (1,2) (1,3)

Table 18: Portfolio dependent impact distribution gamma parameters of AML attack by a
criminal gang.
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