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ABSTRACT

In this paper, we present a robust and low complexity model for 
Acoustic Scene Classification (ASC), the task of identifying the 
scene of an audio recording. We firstly construct an ASC model 
in which a novel inception-residual-based network architecture is 
proposed to deal with the issue of mismatched recording devices. 
To further improve the model performance but still satisfy the 
low footprint, we apply two techniques of ensemble of multiple 
spectrograms and model compression to the proposed ASC model. 
By conducting extensive experiments on the benchmark DCASE 
2020 Task 1A Development dataset, we achieve the best model 
performing an accuracy of 71.3% and a low complexity of 0.5 Million 
(M) trainable parameters, which is very competitive to the state-
of-the-art systems and potential for real-life applications on edge 
devices.
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1 INTRODUCTION

The Acoustic Scene Classification (ASC) task, one of main topics in 
‘Machine Hearing’ research field [14], has attracted much research 
attention recently. Indeed, not only more and more ASC datasets 
such as Litis Rouen [32], ESC50 [30], DCASE Task 1 [3], or Crowded
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Figure 1: The high-level architecture of the proposed ASC

model.

Scenes [26] have been published, but various ASC systems, lever-

aging deep neural networks, have been also proposed (i.e. The

literature review section in [22] summarizes state-of-the-art ASC

systems as well as updated machine learning and deep learning

techniques applied for ASC).

Regarding ASC challenges, they mainly come from different

noise resources, various sounds in real-world environments, occur-

ring as single sounds, continuous sounds or overlapping sounds,

or dynamic energy of sound events in a sound scene recording.

These challenges drive ASC research community to focus on an-

alyzing frequency bands [11, 17, 29] rather than specific sound

events [33]. However, the new issue of mismatched recording de-

vices firstly mentioned in DCASE 2018 Task 1B challenge [3] further

increases ASC challenge as this issue causes energy distribution

at certain frequency bands of spectrograms from the same class

significantly different (i.e. In Figure 1 of [31], Mel-based spectro-

grams from the same sound scene of ‘on Tram’ show different as

they are from three different recording devices). To deal with the

mismatched recording devices, ensemble of different spectrogram

inputs [18, 19, 23–25, 27, 28] or ensemble of multiple classification

models [5, 20] are mainly approached. However, ensemble methods

present large footprint models, which is challenging to implement

on edge devices or real-time applications.

This paper aims at developing an ASC model which is not only

robust to deal with ASC challenges mentioned recently but also

presents a low complexity with less than 1M parameters. To this

end, we firstly construct an ASC model in which a novel neural

network, a shallow and wide inception-residual-based architecture,

is presented. The proposed ASC model is then compared with other

deep learning based models using benchmark architectures such as

VGGish networks (e.g., VGG16, VGG19) or residual based architec-

tures (e.g., Resnet, DenseNet, MobileNet, or Xception) to evaluate

whether a wider and shallow network or a deeper architecture

is effective for ASC, specially with the mismatched recording de-

vice issue. We then apply two techniques: (1) ensemble of multiple

spectrograms and (2) model compression to the proposed model,
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Figure 2: The proposed novel inception-residual-based deep neural network for the back-end classification.

achieve a low footprint ASC model but still perform robust and

competitive to state-of-the-art systems.

2 THE PROPOSED ASC SYSTEM

We firstly construct our ASC model which presents a high-level

architecture in Figure 1. As Figure 1 shows, the proposed ASC

model can be separated into three main steps: The front-end fea-

ture extraction, the online data augmentations, and the back-end

classification.

2.1 The front-end feature extraction

The audio recordings are firstly re-sampled to 32,000 Hz. Then, they

are transformed into log-Mel spectrograms using Librosa [15]. By

setting Hann window size, the hop size, the filter number to 2048,

1024, 128, respectively and applying delta, delta-delta on each spec-

trogram, we generate a log-Mel spectrogram of 128×305×3 from

one 10-second audio segment. Notably, the channel dimension is 3,

which causes by concatenating the original log-Mel spectrogram,

delta, and delta-delta.

2.2 The online data augmentations

In this paper, we apply three data augmentationmethods of Random

Cropping [35], Specaugment [21], and Mixup [36, 37], respectively.

In particular, the temporal dimension of log-Mel spectrograms of

128×305×3 is randomly cropped to 128×256×3 (e.g. Random Crop-

ping method). Then, ten continuous and random frequency or tem-

poral bins of the cropped spectrograms are erased (e.g. Specaugment

method). Finally, the spectrograms are randomly mixed together

using different ratios from Uniform or Beta distributions (e.g. Mixup

method). All of three data augmentation methods are applied on

each batch of spectrograms during the training process, referred to

as the online data augmentations.

2.3 The back-end classification

As Figure 2 shows, the proposed back-end classification can be

separated into two main parts: CNN-based deep neural network

backbone and multilayer perceptron (MLP) based classification.

In particular, the proposed CNN-based backbone comprises four

blocks: one Inception Block and three Inc-Res Blocks as described at

the upper part of Figure 2, which makes use of inception-based (e.g.,

Inception Block) or both inception-based and residual architectures

(e.g., three Inc-Res Blocks). Three Inc-Res Blocks share the same

network architecture, but channel numbers increases from 128,

to 256 at two final Inc-Res Blocks. Four blocks of the CNN-based

backbone are performed by Inception layers (Inc01[Channel] in

Inception Block, Inc02[Channel×Kernel Size] in Inc-Res Blocks),

Convolutional layer (Conv[Channel×Kernel Size]), Bach Normal-

ization (BN) [7], Dropout (Dr(Drop Ratio) [34], Rectified Linear

Unit (ReLU) [16], Max Pooling (MP[Kernel Size]), Average Pooling

(AP [Kernel Size]), Residual Normalization (RN(𝜆 = 0.4)) inspired
from [8]).

Regarding two Inc01 layers used in Inception Block as shown in

the left part of Figure 2, we use fixed kernel sizes of [3×3], [1×1], and

[4×1] (Note that using the kernel [4×1] helps to focus on frequency

bands). Meanwhile, kernel sizes used in Inc02 layers in three Inc-

Res Blocks as shown in the right part of Figure 2 are defined by

kernel size 𝐾 . By using different kernel sizes of [K×1], [K×K], and

[1×K], then applying AP layers with the same kernels, and finally

adding output of these AP layers together, the network can learn

the distribution of energy in certain frequency bands effectively,

which strengthens the network to tackle the issue of mismatched

recording devices.

The MLP-based classification as shown in the lower part of

Figure 2 performs a Pooling Block and two fully connected layer

blocks. At Pooling Block, we extract three types of features from:

(1) global average pooling across the channel dimension, (2) global

max pooling across temporal dimension, and (3) global average

pooling across frequency dimensions. We then concatenate these

features before feeding into fully connected blocks. While the first

fully connected layer (FC[Channel]) combines with ReLU and Dr,

the second fully connected layer uses Softmax layer for classifying

into 𝐶 = 10 scene categories.

To further evaluate whether a wider or deeper neural network

architecture is effective for ASC with the issue of mismatched

recording devices, we replace the proposed CNN-based backbone by

different benchmark network architectures of VGG16, VGG19, Mo-

bileNetV1, MobileNetV2, ResNet50V2, ResNet101V2, ResNet152V2,

DenseNet121, DenseNet169, DenseNet201, and Xception which are

available from Keras Application API [1]. In other words, only

the layers before the global pooling layer of these benchmark net-

works are used. These reused layers are then connected with the

MLP-based classification of the proposed ASC model to perform

end-to-end network architectures. These network architectures
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Figure 3: Channel deconvolution for reducing trainable pa-

rameters.

are then evaluated and compared with the proposed ASC model.

Notably, the steps of the front-end feature extraction and the online

data augmentations are retained during evaluating these network

architectures.

3 ENSEMBLE METHOD AND MODEL
COMPRESSION TO IMPROVE ASC MODEL

3.1 Ensemble of multiple spectrograms to
improve the model accuracy

As mentioned in Section 1, an ensemble of different input spectro-

grams is a rule of thumb to enhance an ASC system performance.

We, therefore, evaluate this ensemble strategy in our paper. In partic-

ular, we use three spectrograms of log-Mel, Constant Q Transform

(CQT) [15], and Gammatone filter (Gam) [2]. By using the same set-

tings mentioned in Section 2.1, all spectrograms present the same

size of 128×305×3. For each type of spectrogram, we apply the

same data augmentation methods mentioned in Section 2.2 and the

proposed model presented in Section 2.3 for classification, referred

to as CQT-model, log-Mel-model, and Gam-model, respectively.

We then fuse the probability results by using PROD late fusion. In

particular, we conduct experiments over individual network with

different spectrogram inputs, then obtain predicted probability of

each network as p̄s = (𝑝𝑠1, 𝑝𝑠2, ..., 𝑝𝑠𝐶 ), where 𝐶 is the category

number and the 𝑠𝑡ℎ out of 𝑆 networks evaluated. Next, the predicted
probability after PROD fusion pprod = (𝑝1, 𝑝2, ..., 𝑝𝐶 ) is obtained
by:

𝑝𝑐 =
1

𝑆

𝑆∏
𝑠=1

𝑝𝑠𝑐 𝑓 𝑜𝑟 1 ≤ 𝑠 ≤ 𝑆 (1)

Finally, the predicted label 𝑦 is determined by

𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑝1, 𝑝2, ..., 𝑝𝐶 ) (2)

3.2 Model compression techniques to reduce
the model complexity

To deal with the issue of large footprint model when using ensemble

of multiple spectrograms, we apply the model compression tech-

niques: channel deconvolution and channel reduction. Regarding

the channel deconvolution technique inspired from [9, 12], convolu-

tional layers Inc02 using kernel sizes of [K×K] are re-constructed as

shown in Figure 3. By using the channel deconvolution, the number

Table 1: Channel deconvolution and channel reduction tech-

niques to achieve low complexity models

proposed model Red01 Red02 Red03 Red04

Inception Block 2×128 128 64 32 32

Inc-Res Block 2×128 128 64 32 32

Inc-Res Block 2×256 128 64 32 32

Inc-Res Block 2×256 128 64 32 32

FC layer 1024 1024 1024 1024 None

FC layer 10 10 10 10 10

Parameters (M) 4.3 1.6 0.46 0.17 0.1

of trainable parameters used in a convolutional layer with kernel

[K×K] is reduced to nearly 1/8.5 of the original number. Next, we

further reduce the model complexity by decreasing the channel

numbers at all convolutional layers as shown in Table 1 (i.e. Only

one inception layer is used in Inception Block and Inc-Res Blocks).

Generally, we evaluate four cases of channel deconvolution and

channel reduction, referred to as Red01, Red02, Red03, and Red04,

which helps to reduce the complexity of the proposed ASC model

from 4.3M to 1.6M, 0.46M, 0.17M, and 0.1M of trainable parameters,

respectively.

4 EXPERIMENTS AND DISCUSSION

4.1 Dataset and Evaluation Metric

DCASE 2020 Task 1A Development set [6]:The dataset com-

prises 23040 segments (duration of each is 10 seconds) with a total

recording time of 64 hours. The dataset was recorded from three

real devices namely A, B, and C with 40 hours, 3 hours, and 3 hours,

respectively. Additionally, synthesized audio recordings namely

from S1 to S6 with 3-hour recording time for each are added. As

audio recordings are from both real and synthesized devices, this

dataset is ideal to evaluate ASC task with the issue of mismatched

recording devices.

We follow DCASE challenges, then separate the DCASE 2020

Task 1A Development set into Training and Evaluating subsets for

training and evaluating processes, respectively (Note that audio

recordings from S4, S5, and S6 are not presented in Training subset

to evaluate unseen samples). We also obey DCASE challenges, then

use Accuracy (Acc.%) as the metric for evaluating our proposed sys-

tems in this paper. To compare the model complexity, we compute

the number of parameters (Million) used by evaluating models.

4.2 Model Implementation

As using the Mixup data augmentation method, labels are not one-

hot encoding format. Therefore, we use Kullback–Leibler diver-

gence (KL) loss [13] shown in Eq. (3) below.

𝐿𝑜𝑠𝑠𝐾𝐿 (Θ) =
𝑁∑
𝑛=1

y𝑛 log

{
y𝑛

ŷ𝑛

}
+
𝜆

2
| |Θ| |22 (3)

where Θ are trainable parameters, constant 𝜆 is set initially to

0.0001, 𝑁 is batch size set to 100, yi and ŷi denote expected and

predicted results. We construct and train deep learning networks

proposed with Tensorflow. We set epoch number=100 and using

Adam method [10] for optimization. While a learning rate of 0.0001

is set for the first 80 epochs with data augmentation methods, a

low learning rate of 0.000001 is set for the next 20 epoches without

any data augmentation method.
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Table 2: Compare the proposed ASC model to DCASE baseline and benchmark neural networks

Performances DCASE Proposed MobileV1 MobileV2 VGG16 VGG19 ResNet50V2 ResNet152V2 DenseNet121 DenseNet201 Xception

Baseline Model

A(%) 70.6 77.3 74.2 71.0 68.3 67.1 74.1 74.0 74.1 74.8 75.2

B(%) 60.6 70.5 60.1 56.3 54.5 56.1 57.9 60.8 63.1 58.3 62.0

C(%) 62.6 75.7 63.7 60.6 61.5 61.5 63.7 67.8 63.7 68.6 68.4

S1(%) 55.0 69.7 57.2 52.5 55.3 49.8 60.2 52.5 62.0 57.2 60.1

S2(%) 53.3 70.6 51.4 55.2 54.4 51.4 54.1 52.8 58.9 56.3 54.7

S3(%) 51.7 71.8 55.4 52.5 53.5 52.0 55.6 57.0 60.2 59.6 62.2

unseen-S4(%) 48.2 61.5 43.8 41.3 43.8 38.3 45.6 47.6 51.7 51.5 50.4

unseen-S5(%) 45.2 66.1 44.7 46.1 45.3 44.4 52.0 44.3 53.8 48.7 49.4

unseen-S6(%) 39.6 58.8 32.6 29.5 40.1 31.4 31.7 31.9 40.8 35.7 35.2

Average(%) 54.1 69.1 53.3 51.6 53.3 50.8 55.1 54.0 58.7 56.7 57.9

Parameters(M) 5.0 4.3 4.3 3.5 15.3 20.6 25.7 60.5 8.1 20.3 23.0

Memory(MB) 19.2 16.6 16.4 13.7 58.2 254.8 98.0 230.6 30.9 77.5 87.6

Table 3: Performance comparison among single and ensem-

ble models with or without model compression

Single Models Acc.(%) Parameters (M)

CQT-model 60.8 4.3

CQT-model w/ Red01 58.7 1.6

CQT-model w/ Red02 60.2 0.46

CQT-model w/ Red03 61.0 0.17

CQT-model w/ Red04 58.2 0.1

Gam-model 65.8 4.3

Gam-model w/ Red01 63.5 1.6

Gam-model w/ Red02 64.3 0.46

Gam-model w/ Red03 63.7 0.17

Gam-model w/ Red04 61.9 0.1

log-Mel-model 69.1 4.3

log-Mel-model w/ Red01 67.3 1.6

log-Mel-model w/ Red02 67.4 0.46

log-Mel-model w/ Red03 64.7 0.17

log-Mel-model w/ Red04 65.6 0.1

Ensemble Models Acc.(%) Parameters (M)

CQT, log-Mel, Gam-models 73.6 12.9

CQT, log-Mel, Gam-models w/ Red01 72.9 4.8

CQT, log-Mel, Gam-models w/ Red02 72.0 1.4

CQT, log-Mel, Gam-models w/ Red03 71.3 0.5

CQT, log-Mel, Gam-models w/ Red04 70.9 0.3

4.3 Experimental results and discussion

As experimental results on DCASE 2020 Task 1A dataset are shown

in Table 2, our proposed ASC model outperforms benchmark net-

work architectures across recording devices. Further analyze perfor-

mance of benchmark network architectures, it indicates that deeper

neural networks such as VGG19, ResNet152V2 or DenseNet201

present low performance than the lower complexity networks such

as VGG16, ResNet50V2, or DenseNet121 from the same architecture

groups. This proves that a wider and shallow neural network is

more effective rather than a deeper architecture for ASC task with

mismatched recording devices.

Although applyingmodel compression techniques helps to signif-

icantly reduce the model complexity, it affects the accuracy perfor-

mance of single models as shown in Table 3. By using both ensemble

of multiple spectrograms and model compression techniques (e.g.

channel deconvolution and channel reduction), we can achieve ASC

models which show a balance between the accuracy performance

and the model complexity. Indeed, ensembles of three spectrograms

using Red03 and Red04 achieve 71.3% with 0.5M and 70.9% with

0.3M respectively, which satisfies the target low footprint model

with less than 1M parameters.

Table 4: Compare our proposed bestmodels to 5 best systems

from DCASE 2020 Task 1A challenge

Top-5 models [4] Acc.(%) Parameters (M)

Top-1 (ensemble) 84.2 341

Top-2 (ensemble) 75.0 -

Top-3 (ensemble) 74.4 39

Top-4 (ensemble) 73.3 225

Top-5 (ensemble) 73.1 13

Our system 73.6 12.9

(ensemble) 72.9 4.8

72.0 1.4

71.3 0.5

70.9 0.3

Table 4 compares our best performance models with the top-

five systems submitted to DCASE 2020 Task 1A challenge [3]. Our

proposed model (e.g. the ensemble of CQT-model, Gam-model,

and log-Mel-model) achieves the top-4 ranking which records an

accuracy of 73.6% and present lower model footprint.

5 CONCLUSION

This paper has presented a novel inception-residual-based neural

network for ASC task with mismatched recording devices. By con-

ducting intensive experiments over the benchmark DCASE 2020

Task 1A Development dataset, it is indicated that the novel network

presenting a wider and shallow architecture is more effective for

ASC rather than deeper architectures. Additionally, our proposed

ensemble of multiple spectrograms and model compression (e.g.,

Red03) help to achieve an accuracy of 71.3% and low footprint of

0.5M trainable parameters, which shows a balance between the

model performance and the model complexity. These results also

prove that our proposed ASC models are competitive to the state-

of-the-art systems and validates ASC application on edge devices.
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