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In this paper, we propose lightweight deep neural networks for Acoustic Scene Classification (ASC) and a
visualization method for presenting a sound scene context. To this end, we first propose an inception-
based and low-memory footprint ASC model as the ASC baseline. The ASC baseline is then compared with
benchmark and high-complexity network architectures. Next, we improve the ASC baseline by proposing
a novel deep neural network architecture which leverages a residual-inception architecture and multiple
kernels. Given the novel residual-inception (NRI) based model, we apply multiple techniques of model
compression to evaluate the trade off between the model complexity and the model accuracy perfor-
mance. Finally, we evaluate whether sound events detected in a sound scene recording can help to
improve ASC accuracy performance and to present the sound scene context more comprehensively.
We conduct extensive experiments on various ASC datasets, including sound scene datasets proposed
for IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events (DCASE) 2018
Task 1A and 1B, 2019 Task 1A and 1B, 2020 Task 1A, 2021 Task 1A, and 2022 Task 1. Our experimental
results on several different ASC challenges highlight two main achievements. First, given the analysis of
the trade off between the model performance and the model complexity, we propose two low-
complexity ASC models: The medium-size model (MM) presents 4.96 M trainable parameters, 19.3 MB
memory occupation, and 7.12 BFLOPs; The small-size model (SM) presents a very low complexity of
120 K trainable parameters, 120 KB memory occupation, and 0.82 BFLOPs. These ASC systems are very
competitive to the state-of-the-art systems and compatible for real-life applications on a wide range of
edge devices. Secondly, from the analysis of the role of sound events in a sound scene, we propose an
effective visualization method for comprehensively presenting a sound scene context. By combining both
the sound scene and sound event information, the visualization method not only indicates predicted
sound scene contexts with high probabilities but also provides statistics of sound events occurring in
these sound scene contexts.

� 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Acoustic Scene Classification (ASC), one of two main tasks of the
machine hearing research [1], aims at detecting surrounding envi-
ronments such as ‘in a bus’, ‘in an shopping mall’, or ‘on a street’. By
detecting the current sound scene context, edge devices could
make use of this useful information to enable them to respond
appropriately or adjust certain functions, then opening up various
applications: to integrate an ASC component into a robotic system
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[2], a mobile application [3], or a sensor system [4] as one of main
functions; to support sound event detection when these sound
events are mixed in real-world environments [5]. Considering a
general recording of an acoustic environment, it contains not only
a background sound field but also various foreground events. Both
background and foreground contain true noise–continuous, peri-
odic or aperiodic acoustic signals that interfere with the under-
standing of the scene. If the background is considered as the
noise and the foreground is referred to as the signal, it can be seen
that the signal-to-noise ratio exhibits high variability due to the
diverse range of environments or recording conditions. To further
complicate matters, if a sound event can occur in a long time, it
could be considered as background in certain contexts. For exam-
ple, an audio recording ‘on pedestrian street’ may present a quiet
background, but the sound of the ‘engine’ of traffic passes is consid-
ered as the foreground events. However, a lengthy ‘engine’ sound in
an ‘on train’ recording would be considered a background sound.
Furthermore, the issue of mismatched recording devices [6,7]
causes very different distribution of energy across the frequency
dimensions of audio spectrograms from the same acoustic scene
[8], which leads classification models to classify incorrectly. All
these challenges mentioned make acoustic scene classification
(ASC) task particularly challenging.

To deal with the ASC challenges recently mentioned, researches
on the ASC task have tended to focus on two main approaches. The
first aims at solving the lack of discriminative information by
exploiting various methods of low-level feature extraction. In par-
ticular, an input audio is transformed into various two-
dimensional spectrogram representations. Then, these spectro-
grams are independently trained with back-end deep learning
models. Finally, independent models’ results are fused to achieve
the best performance. For instances, log-Mel spectrogram was
combined with constant-Q transform (CQT) [9], Gammatone-like
spectrogram (GAM) [10], or draw audio [11]. To evaluate a
wavelet-transform derived spectrogram representation, Ren et al.
[12] compared results from STFT spectrograms and a combination
of Bump and Morse scalograms. By exploiting channel information,
Sakashita and Aono [13] generated multi-spectrogram inputs from
two channels, the average and side channels, and even explored
separated harmonic and percussive spectrograms from mono
channels. The approach of using multiple spectrograms has proven
powerful to tackle the issue of mismatched recoding devices.
Indeed, a combination of log-Mel and Mel-based nearest neighbor
filter (NNF) spectrograms in [14] helps to achieve the top-1 on
DCASE 2018 Task 1B blind Test set and the top-4 on DCASE 2018
Task 1B Development set. Meanwhile, the authors in [15] con-
ducted various ensemble methods on log-Mel, GAM, CQT, and
MFCC spectrograms, then achieved the top-6 on DCASE 2020 Task
1A blind Test set and the top-1 on DCASE 2020 Task 1A Develop-
ment set. Although the approach of multiple spectrogram inputs
shows effective to deal with the ASC challenges, it presents the
issue of large memory footprint as using ensemble of multiple clas-
sifiers (i.e. The memory footprint is the number of Byte on a target
device’s memory which the trainable parameters of a model
occupy).

Instead of using multiple spectrogram inputs, the second
approach tends to deploy more complex deep learning architec-
tures, especially focusing on exploring the frequency bands of
audio spectrograms. For instances, authors in [16] split the entire
log-Mel spectrograms into three sub spectrograms across the fre-
quency dimension. Then, each sub spectrogram was learned by a
ResNet-based network architecture before concatenating together.
Meanwhile, Phaye et al. [17] proposed a SubSpectralNet network
which comprises multiple sub-networks with parallel branches
to extract discriminative information from 30 sub log-Mel spectro-
grams. However, to achieve the best performance, some papers
2

from the second approach have still applied ensemble methods
of multiple models [18–22], which increases the model
complexity.

It can be seen that although both multiple spectrogram input
and complex network approaches show effective to deal with the
ASC challenges, these approaches present the issue of large model
footprint. These high-complexity ASC models prevent to integrate
these models into edge devices or mobiles with a memory limita-
tion. Recently, the issue of low-complexity model within the ASC
task have been indicated in [23,24] as a new challenge of the
ASC task. To deal with the issue of large memory footprint as using
complex network architectures, ensemble of multiple models, or
ensemble of multiple spectrogram inputs, researches on the ASC
task can be separated into two main groups. The first research
group much focuses on the network architecture. For instances,
authors in [25] proposed a lightweight TC-SKNet network for the
ASC task which takes advantages from temporal convolution and
the Selective Kernel Networks [26]. Similarly, a multi-kernel and
separable convolution base architecture was proposed in [27],
which achieved the top-3 on DCASE 2022 Task 1 blind Test set.
Focus on frequency normalization, authors in [28] proposed a
novel Residual Normalization method and a residual-based net-
work architecture, which showed effective to improve the ASC per-
formance and achieved the top-1 on DCASE 2021 Task 1A blind
Test set and the top-4 on DCASE 2021 Task 1A Development set,
but still satisfied the challenge requirement of less than 120 KB
memory footprint occupation. Meanwhile, the second group lever-
ages a wide range of model compression techniques to reduce the
model size. Among the model compressions, the pruning
[18,19,29,30] and quantization [29,20] techniques have been
widely applied. While quantization techniques feasibly help the
model reduce to 1/4 of the original size (i.e. 32 bit with floating
point format presenting for 1 trainable parameter is quantized to
8 bit with integer format [31]), pruning techniques prove that
models can be reduced to 1/10 of the original sizes [29]. Recently,
teacher-student schemes have proven effective to achieve a low-
complexity student which still performs well the ASC task. Indeed,
ASC systems [32,33], which achieved the top-1 and top-2 of DCASE
2022 Task 1, made use of this scheme.

Looking at the recent approaches surveyed above, we can see
that: (I) While ensembles of multiple spectrograms or complex
network architectures can help to enhance the ASC performance
as well as effectively to deal with the mismatched recording
devices, these approaches present large memory footprint models
which are not compatible for applications on edge devices or
mobiles. However, recent research [30,34], which provided the
analysis of trade off between the ASC system performance and
the ASC system complexity, much focused on pruning techniques
rather than other model compression techniques. Although prun-
ing techniques prove to reduce the model complexity signifi-
cantly, the pruning parameters are not removed from the
proposed network architecture and they still occupy the memory
of edge devices that leads the cost computation same as the non-
pruning parameters. Therefore, the recent DCASE 2021 Task 1A
and DCASE 2022 Task 1 challenges [24], which focus on the issue
of low-complexity ASC model, require not to use pruning tech-
niques. As a result, an analysis of the trade off between the ASC
system performance and the ASC system complexity without
using the pruning techniques is necessary. (II) While target
devices integrating ASC function present a wide range memory
capacity (i.e. High-performance computers present large memory
with more than GB; Applications on mobiles require a memory
occupation of around 20 MB [35,36]; Embedded devices such as
STM32L496@80 MHz or Arduino Nano 33@64 MHz show a limita-
tion memory with the maximum 256 KB), recently proposed low-
complexity ASC systems have not been indicated to be compatible
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for certain target devices. Additionally, although both the number
of trainable parameters and the number of floating point opera-
tions (FLOPs) reflect the model complexity on a certain device,
almost state-of-the-art ASC systems report the number of train-
able parameters without FLOPs number. (III) As a sound scene
can contain different types of sound events and some sound
events are distinct for certain sound scene, this inspires that
exploring sound event information in a sound scene recording
can help to further improve the ASC performance. However, just
a few of researches [37,38] leveraged sound event information
for enhancing ASC systems and none of research has deeply ana-
lyzed the relationship and correlation between sound scene and
sound events.

Therefore, in this work, we aim to fill these three gaps of the
ASC research and further describe our main contributions below:

1. By evaluating various neural network architecture, we indicate
that a shallow and wider inception based network is more
effective rather than other deeper architectures with a trunk
of convolutional layers for the ASC task. Inspired by the effi-
ciency of inception based network for the ASC task, we propose
a novel residual-inception (NRI) based network architecture.
We then combine the NRI model with multiple spectrogram
inputs and different model compression techniques to propose
a comprehensive analysis of the trade off between the model
accuracy performance and the model complexity (Notably, the
pruning technique is not used for the model compression in this
paper).

2. Given the analysis of the trade off between the model perfor-
mance and the model complexity, we propose different ASC
models presenting a wide range of model complexity, which
are very competitive to the state-of-the-art ASC systems and
potential to apply on various target devices. In particular, three
ASC models are proposed: The first large-size model (LM) with
12.9 M trainable parameters, 49.8 MB memory occupation, and
43.68 BFLOPs is suitable for applications running on high-
performance computers; The second medium-size model
(MM) with 4.96 M trainable parameters, 19.3 MB memory
occupation, and 7.12 BFLOPs which satisfies a wide range of
edge devices and mobiles surveyed in [35,36]; The third
small-size model (SM) with 120 K trainable parameters,
120 KB memory occupation, and 0.82 BFLOPs which is suitable
for very limited-memory embedded systems such as
STM32L496@80 MHz or Arduino Nano 33@64 MHz.

3. We comprehensively evaluate the role of sound events in a
sound scene recording, indicate how pre-trained models on
the task of acoustic event detection (AED) can help to improve
the ASC performance. Given the analysis of the role of sound
events, we provide an effective visualization method to present
a sound scene context more comprehensively. In particular, the
visualization method is evaluated in a use case of detecting and
presenting a riot context in this paper. In the use case experi-
ment, not only statistics of detected sound events in each 5-s
duration of sound scene recordings are presented, but distinct
sound events in a riot context are also indicated. From the pro-
posed use case, we proves that our proposed visualization
method is very effective for detecting and presenting a sound
scene context. Additionally, as sound scene and sound events
information used in the proposed visualization method are
obtained from the medium-size model (MM) with less than
20 MB memory occupation, the visualization method is also
feasible to be integrated in a wide range of edge devices or
mobiles.

Rather than selecting a single task, we evaluate over a wide
range of datasets of: Crowded-Scene [39], DCASE 2018 Task 1A
3

and 1B [40], DCASE 2019 Task 1A and 1B [41], DCASE 2020 Task1A
[42], DCASE 2021 Task 1A [42], and DCASE 2022 Tasks 1 [42]. We
will see that the performance of our proposed system is competi-
tive with the state-of-the-art systems.

2. Evaluating datasets

To select ASC datasets for evaluating our proposed models in
this paper, we first analyze all published and real-life-recording
audio datasets since 2010 as shown in Table 1. As Table 1 shows,
the audio datasets can be separated into two main groups. The first
dataset group of DEMAND [43], UrbanSound8K [44], Freefield1010
[45], ESC-50 [46], ESC-10 [46], CHIME-Home [47], Youtube-8 M
[48], MSoS [49], and AudioSet [50] was mainly proposed for the
sound source detection or the sound event detection, referred to
as Acoustic Event Detection (AED). In these datasets for the AED
task, an audio recording was labeled by one or multiple sound
events (i.e. The piano, the human speech, etc.) occurring in the
recording. Meanwhile, the remaining datasets in Table 1 were pro-
posed for the task of sound scene classification, referred to as
Acoustic Scene Classification (ASC). An audio recording used for
the ASC task was labeled by the place (i.e. On bus, in park, etc.)
where the audio file was recorded. Among the datasets for the
ASC task, DCASE 2013 Scenes, TUT Sound Scenes 2016, and TUT
Acoustic Scenes 2017 present a limitation of recording time less
than 15 h. Meanwhile, the datasets for the ASC task since the year
of 2018 show more than 20-h recording time. As the result, we
evaluate our proposed ASC systems on TUT Urban Acoustic Scenes
2018 [40], TUT Urban Acoustic Scenes 2018 Mobile [40], TAU
Urban Acoustic Scenes 2019 [41], TAU Urban Acoustic Scenes
2019 Mobile [41], TAU Urban Acoustic Scenes 2020 Mobile [42],
and Crowded Scenes [39] (Notably, although LITIS Rouen presents
the total recording time of 25.2 h, the link for downloading this
dataset has been invalid). Additionally, as each following section
in this paper not only describes ASC systems but also evaluates
and discusses experimental results, we first present the selected
ASC datasets in detail and indicate why and which datasets are
evaluated in certain sections.

Crowded Scenes (Cr-Sc) [39]: contains 341 videos collected
from YouTube (in-the-wild scenes), which presents a total record-
ing time of nearly 29.1 h. These videos were then split into 10-s
video segments, each of which was annotated by one of five cate-
gories: ‘Riot’, ‘Noise-Street’, ‘Firework-Event’, ‘Music-Event’, or ‘Sport-
Atmosphere’. Notably, 10-s video segments split from an original
video are not presented in both Train and Test subsets to make
the data distribution different between these two subsets. In this
paper, we extract audio recordings from these video segments
and follow the splitting method as proposed in [39] to evaluate this
dataset1.

TUT Urban Acoustic Scenes 2018 [40] and TAU Urban Acous-
tic Scenes 2019 [41] Development sets: TUT Urban Acoustic Sce-
nes 2018 Development set, which was proposed for DCASE 2018
Task 1A and referred to as DC-18-1A. The dataset was recorded
from one device, referred to as the device A. TAU Urban Acoustic
Scenes 2019 Development set, which was proposed for DCASE
2019 Task 1A and referred to as DC-19-1A, reused all DC-18-1A
dataset and more data was added (i.e. Additional audio recordings
were also recorded on the same device A). As audio recordings
from these both datasets are from one device A, they are used to
evaluate the ASC task regardless of the issue of mismatched
recording devices.

TUT Urban Acoustic Scenes 2018 Mobile [40] and TAU Urban
Acoustic Scenes 2019 Mobile [41] Development sets: TUT Urban
Acoustic Scenes 2018 Mobile Development set, which was pro-



Table 1
Real-life recording and publishing audio datasets since 2010.

Year Name Classes Samples Duration (hours)

2013 DEMAND [43] 18 18 (300s) 1.5
2013 DCASE 2013 Scenes [51] 10 100 (30s) 0.83
2014 UrbanSound8K [44] 10 8732 (4s) 9.7
2014 Freefield1010 [45] 7 7690 21.3
2015 LITIS Rouen [52] 19 3026 (30s) 25.2
2015 ESC-50 [46] 50 2000 (5s) 2.78
2015 ESC-10 [46] 10 400 (5s) 0.56
2015 CHIME-Home [47] 7 6137 (4s) 6.8
2016 Youtube-8 M [48] 3862 >6.1 M > 0.3 M
2016 TUT Sound Scene 2016 [53] 15 1170 (30s) 9.75
2017 AudioSet [50] 527 2.1 M 5800
2017 TUT Sound Scene 2017 [53] 15 4680 (30s) 13
2018 MSoS [49] 5 2000 (5s) 2.78
2018 TUT Urban Acoustic Scenes 2018 [40] 10 86400 (10s) 24
2018 TUT Urban Acoustic Scenes 2018 Mobile [40] 10 10080 (10s) 28
2019 TAU Urban Acoustic Scenes 2019 [41] 10 14400 (10s) 40
2019 TAU Urban Acoustic Scenes 2019 Mobile [41] 10 16560 (10s) 46
2020 TAU Urban Acoustic Scenes 2020 Mobile [42] 10 23040 (10s) 64
2022 Crowded Scenes [39] 5 10460 (10s) 29.1
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posed for DCASE 2018 Task 1B and referred to as DC-18-1B, reused
all DC-18-1A dataset recently mentioned, and added more data
recorded from two other devices, referred to as the device B and
the device C. Similarly, TAU Urban Acoustic Scenes 2019 Mobile
Development set, which was proposed for DCASE 2019 Task 1B
and referred to as DC-19-1B, also reused DC-19-1A dataset, and
3 h of recording time on each device B and C were further added.
As audio recordings from these both datasets are from three differ-
ent devices (A, B, and C) with a limitation of recording time on
device B and C, these datasets are used to evaluate the ASC task
concerning the issue of mismatched recording devices.

TAU Urban Acoustic Scenes 2020 Mobile Development set
[42]: was proposed for DCASE 2020 Task 1A and referred to as
DC-20-1A. This is currently the largest dataset proposed for the
ASC task. In particular, DC-19-1B set with 40 h, 3 h, and 3 h
recorded on devices A, B, and C is reused in DC-20-1A. Additionally,
synthesized audio recordings namely from S1 to S6 with 3-h
recording time for each synthesized device were added. Notably,
audio recordings from S4, S5, and S6 are not presented in Training
subset to evaluate unseen samples. As audio recordings are from
both different real and synthesized devices, this dataset is pro-
posed to evaluate the ASC task with the issue of mismatched
recording devices.

This dataset is also used in DCASE 2021 Task 1A (DC-21-1A)
and DCASE 2022 Task 1 (DC-22–1) challenges for evaluating both
issues of mismatched recording devices and low-complexity mod-
els. While DCASE 2021 Task 1A challenge evaluates low-
complexity models on 10-s segments, it is more challenging in
DCASE 2022 Task 1 challenge as this task requires to evaluate on
1-s segments and does not allow to use pruning techniques.

Given these updated and benchmark sound scene datasets
mentioned above, we can see that DC-2020-1A dataset includes
all DC-18/19-1A/1B datasets and it is proposed to evaluated the
issue of low complexity model in DCASE 2021 Task 1A and DCASE
2022 Task 1 challenges. We, therefore, first use DC-2020-1A data-
set for: (1) evaluating our proposed ASC baseline in Section 3, (2
evaluating our proposed novel residual-inception neural network
architecture in Section 4, (3 analyzing the trade off between ASC
system performance and complexity in Section 5, and (4) evaluat-
ing how a pre-trained model for the acoustic event detection (AED)
task can help to improve ASC accuracy performance in Section 6.
These sections recently mentioned focus on how to achieve high-
performance and low-complexity ASC models.

Second, while all DCASE datasets present ten daily scenes,
Crowded Scenes dataset was proposed to classify five very noise
4

sound contexts. This inspires us to define a new dataset of sound
scene contexts which comprises both DC-2020-1A and Crowded
Scenes datatsets. As the new dataset presents diverse scene con-
texts, a wide range of sound events can be observed. Additionally,
it is a fact that specific sound events can only occur in certain
sound scene such as the ‘gun sound‘ or ‘explosion’ in a ‘riot context’
or the ‘loud music’ in a ‘music event’. We, therefore, make use of
statistic information of sound events in a sound scene context
and ASC systems proposed in previous sections (i.e. From Section 3
to Section 6) to develop a visualization method. The proposed visu-
alization method helps to present a sound scene context more
comprehensively in Section 7.

Finally, our proposed models are evaluated on all datasets men-
tioned and comparedwith the state-of-the-art systems in Section 8.
The Training/Evaluating splitting methods used to evaluate DCASE
datasets obey DCASE challenges.
3. Propose an ASC baseline system

To evaluate whether extending deep neural network architec-
tures in depth with trunks of convolutional layers is effective for
the ASC task, we first propose an ASC baseline system which pre-
sents an inception based architecture and low memory footprint.
Next, we construct benchmark neural networks of VGG16,
VGG19, ResNet50V2, ResNet152V2, DenseNet169, DenseNet201,
and Xception, which present much deeper convolutinal layers
compared to the ASC baseline. The proposed low-complexity ASC
baseline is evaluated and compared with the benchmark and
high-complexity architectures on DC-20-1A dataset. As Fig. 1
shows, the proposed ASC baseline framework is separated into
three main steps: Front-end spectrogram feature extraction, online
data augmentations, and back-end inception based deep neural
network for classification.
3.1. Proposed ASC baseline

Front-end spectrogram feature extraction: The input audio
recordings are first resampled to 32,000 Hz. Then, the resampled
audio recordings are transformed into Mel spectrograms using
Librosa toolbox [54]. As we set the Fast Fourier Transform (FFT)
number, Hann window size, the hop size, and the filter number
to 4096, 2048, 1024, and 128 respectively, a two-dimensional
Mel spectrogram of 128�312 is generated from one 10-s audio
recording. We finally apply delta and delta-delta on each



Fig. 1. The high-level architecture of the proposed ASC baseline.

Table 2
The inception based neural network for classification in the ASC baseline system.

Main Blocks Sub blocks Layers

CNN-based
backbone

Inception Block
01

Inc(Ch=128) - BN - ReLU - MP[2�2] -
Dr(0.1)

Inception Block
02

Inc(Ch=128) - BN - ReLU - MP[2�2] -
Dr(0.15)

Inception Block
03

Inc(Ch=256) - BN - ReLU - MP[2�2] -
Dr(0.2)

Inception Block
04

Inc(Ch=256) - BN - ReLU - GMP - Dr
(0.25)

MLP-based Dense Block 01 FC(Ch=1024) - BN - ReLU - Dr(0.25)
classification Dense Block 02 FC(Ch ¼ C) - Softmax

Fig. 2. The architecture of the inception layer (Inc(Ch = The channel number) in the
proposed ASC baseline.
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two-dimensional spectrogram, create three-dimensional spectro-
gram of 128�305�3 (i.e. The channel dimension is three which
is created by concatenating the original Mel spectrogram, delta,
and delta-delta).

Online data augmentations: In this paper, we apply three data
augmentation methods: Random Cropping [55], Specaugment [56],
and Mixup [57,58], respectively. First, the temporal dimension of
Mel spectrograms of 128�305�3 is randomly cropped to
128�256�3 (Random Cropping). Next, ten random and continuous
temporal and frequency bins of the cropped spectrograms are
erased (Specaugment). Finally, the spectrograms are randomly
mixed together using different coefficients from both Beta and Uni-
form distributions (Mixup). As all of three data augmentation
methods are applied on each batch of spectrograms in the training
process, we refer them to as the online data augmentations.

Back-end inception based deep neural network: As Table 2
shows, the back-end inception based network is separated into
two main parts: CNN-based backbone and Multilayer Perception
(MLP) based classification. In particular, the CNN-based backbone
comprises four Inception Blocks, each of which is performed by
an inception layer, followed by batch normalization (BN) [59], Rec-
tified Linear Unit (ReLU) [60], drop out (Dr(drop ratio)) [61], Max
Pooling (MP) for the first three Inception Blocks or Global Max
Pooling (GMP) for the final Inception Block 04. The inception layer
architecture (Inc(Ch = The channel number)) is shown in Fig. 2
which is a variant of the naive version of inception layer intro-
duced in [62]. In particular, we use kernel [1�4] instead of [5�5]
as usual to enforce the network focus on minor variation across
the frequency dimension of audio spectrum. Additionally, we add
a convolutional layer with kernel size of [1�1] after the max pool-
ing MP([3�3]) layer.

Regarding the MLP-based classification as shown the lower part
in Table 2, it performs two dense blocks (Dense Block 01 and Dense
Block 02). While the fully connected layers (FC(Ch = The channel
number)) in the first Dense Block 01 is followed by Rectified Linear
Unit (ReLU) and drop out (Dr(drop ratio), the fully connected layer
(FC(Ch = C)) in the second Dense Block 02 uses Softmax layer (i.e. C
is set to match the number of categories classified in a target
dataset.).
3.2. Construct benchmark and high-complexity neural networks for
back-end classification

To evaluate whether benchmark and high-complexity deep
neural network architectures are effective for the ASC task, we
replace the proposed CNN-based backbone in the ASC baseline
model by the benchmark architectures of MobileNetV1, Mobile-
NetV2, VGG16, VGG19, ResNet50V2, ResNet152V2, DenseNet169,
5

DenseNet201, and Xception which are available from Keras Appli-
cation API [63]. In other words, while the proposed MLP-based
classification is remained, we evaluate different backbone network
architectures. Notably, steps of the front-end spectrogram feature
extraction and the online data augmentations used for the ASC
baseline are retained during evaluating these benchmark network
architectures.
3.3. Dataset and settings for evaluating the proposed ASC baseline and
the benchmark neural networks

To evaluate the proposed ASC baseline and the benchmark neu-
ral networks, we use DC-20-1A dataset mentioned in Section 2. We
obey the challenge and follow the recommended setting as men-
tioned in Section 2. Regarding the evaluation metric, we use accu-
racy (Acc.%), which is the most popular and main metric in all ASC
challenges [64].
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As using the Mixup data augmentation method, labels are not
one-hot encoding format. Therefore, we use Kullback–Leibler
divergence (KL) loss [65] shown in Eq. (1) below.

LossKLðHÞ ¼
XN
n¼1

yn log
yn

ŷn

� �
þ k
2
jjHjj22 ð1Þ

where H are trainable parameters, constant k is empirically set to
0:0001;N is batch size set to 64, yi and ŷi denote expected and pre-
dicted results, respectively.

Both the proposed ASC baseline and the benchmark neural net-
works are implemented with Tensorflow framework, using Adam
method [66] for optimization. The training and evaluating pro-
cesses are conducted on GPU Titan RTX 24 GB. The training process
is stop after 40 epochs. While the first 30 epochs uses the learning
rate of 0.001 and all data augmentation methods mentioned in Sec-
tion 3, the remaining epochs uses the lower learning rate of
0.00001 with only Random Cropping data augmentation method.
The final result, which is reported in this paper, is an average of
accuracy results obtained from 10 times of running experiments.
3.4. Performance comparison among DCASE baseline, the proposed
ASC baseline, and the benchmark network architectures

As experimental results are shown in Table 3, our proposed ASC
baseline system outperforms DCASE baseline and all the bench-
mark network architectures. Significantly, our proposed ASC base-
line helps to improve the DCASE baseline on all seen and unseen
recording devices. The results of the proposed ASC baseline also
indicate that performances on unseen devices (S4, S5, and S6) are
lower than seen devices (A, B, C, S1, S2, and S3) with an average
of 10% and the performances on real recording devices (A, B, C)
are better than synthesized devices (S1 to S6).

Regarding the model complexity (e.g. The number of trainable
parameters with the unit of million (M); The memory footprint
presenting the amount of memory with megabyte (MB) unit that
a device needs to store the trainable parameters and one trainable
parameter is presented by 32 bits using floating point format; The
billion of floating point operations (BFLOPs) that a proposed ASC
model uses for an inference process over one input sample), we
can see that deeper neural networks (MobileNetV1, VGG19,
ResNet152V2 or DenseNet201) present low performance than the
lower complexity networks (MobileNetV2, VGG16, ResNet50V2,
or DenseNet121) from the same architecture groups. Meanwhile,
our proposed ASC baseline presents a small trainable parameter
number of 0.94 M, a low memory footprint of 3.5 MB, and BFLOPs
of 1.52, but achieves the best performance compared to the others.
We also see that only DCASE baseline, our ASC baseline, and Mobi-
netV1/V2 network architectures present lower than 5 M trainable
parameters while the others show large amount of trainable
parameters.

Overall, the experimental results indicate that the shallow
inception based network architecture used for the ASC baseline is
more effective than deeper architectures for the ASC task with
the issue of mismatched recording devices. Although the ASC base-
line presents the lowest memory footprint with 3.5 MB which is
compatible to a wide range of mobiles or edge devices, this net-
work architecture is still considered too large regarding small
and limited-memory devices such as STM32L496@80 MHz or
Arduino Nano 33@64 MHz. Additionally, the performance of the
proposed ASC baseline (64.6%) is not competitive to the state-of-
the-art systems. Therefore, these below sections will show how
we improve the ASC baseline accuracy performance, but still sat-
isfy the low-complexity model.
6

4. A novel residual-inception neural network and multiple
spectrograms for ASC

As the performance comparison between the proposed ASC
baseline and the benchmark neural networks are shown in Sec-
tion 3, it indicates that the inception-based architecture shows
effective for the ASC task. To further improve the ASC performance,
we therefore propose a novel residual-inception (NRI) neural net-
work as shown in Fig. 3.
4.1. Propose a novel residual-inception network architecture

As Fig. 3 shows, the proposed residual-inception network archi-
tecture also comprises two main parts: CNN-based deep neural
network backbone and multilayer perception (MLP) based classifi-
cation. In particular, there are four blocks in the proposed CNN-
based backbone: one Dob-Inc Block and three Inc-Res Blocks. These
four blocks are described at the upper part of Fig. 3. While Dob-Inc
Block makes uses of inception-based architecture, both inception-
based and residual architectures are leveraged in three Inc-Res
Blocks.

Regarding the Dob-Inc Block as shown in the left part of Fig. 3, it
reuses the sub-block architecture of Inception Block from the ASC
baseline, but using two Inc01(Ch) layers each of which is accompa-
nied with batch normalization (BN). The number of channel (Ch)
used at these inception layers is set to 128. Three Inc-Res Blocks
as shown in the right part of Fig. 3 present the same network archi-
tecture, and the channel numbers are set to 128, 256, and 256,
respectively. Each Inc-Res Block presents two data streams. As
the first stream is shown on the left, referred to as the shortcut
branch, the feature map input goes through (Conv[Ch�1�1]), BN,
ReLU, average pooling (AP[3�3]), Residual Normalization (RN
(k ¼ 0:4)) inspired from [28]. Meanwhile, in the main stream as
shown on the right, the feature map input first goes though
(Conv[Ch/2�1�1]), BN, and ReLU, then is passed into three sub
branches. In each sub branch of the main stream, different kernel
sizes, defined by K as shown in the right of Fig. 3, are applied to
learn local regions of the feature map input. By using different ker-
nel sizes of [K�1], [K�K], and [1�K] and applying AP layers with
the same kernels [K�K], the network is enforced to learn distribu-
tion of spectrum in certain frequency bands effectively. This
strengthens the network to deal with the different distribution of
energy across the frequency dimensions which occurs with mis-
matched recording devices. Finally, the shortcut stream and three
sub branches in the main stream are accumulated before going
through ReLU, MP[2�2], Dr(0.1), and RN(k ¼ 0:4) in the order.

The MLP-based classification as shown in the lower part of Fig. 3
performs a Pooling Block and two fully connected layer blocks. At
the Pooling Block, thee types of feature are extracted: (1) global
average pooling across the channel dimension (i.e. This is exactly
the global average pooling layer (GAP) used in the proposed ASC
baseline), (2) global max pooling across temporal dimension, and
(3) global average pooling across frequency dimension. We then
concatenate the three features before feeding into following fully
connected blocks. While the first fully connected layer (FC
(Ch = 1024)) is followed by ReLU and Dr(0.2), the second fully con-
nected layer combines with Softmax layer for classifying into C
scene categories.
4.2. Further improve ASC performance by an ensemble of multiple
spectrogram inputs

As using ensemble is a rule of thumb to improve the ASC perfor-
mance and shows effective to deal with the issue of mismatched
recording devices [14,15,67–69], we therefore apply an ensemble



Table 3
Compare our proposed ASC baseline to DCASE baseline, benchmark network architectures on the DC-20-1A dataset.

DCASE
Baseline

Proposed
Baseline

MobileV1 MobileV2 VGG16 VGG19 ResNet50V2 ResNet152V2 DenseNet121 DenseNet201 Xception

A(%) 70.6 73.3 74.2 71.0 68.3 67.1 74.1 74.0 74.1 74.8 75.2
B(%) 60.6 67.0 60.1 56.3 54.5 56.1 57.9 60.8 63.1 58.3 62.0
C(%) 62.6 72.6 63.7 60.6 61.5 61.5 63.7 67.8 63.7 68.6 68.4
S1(%) 55.0 64.2 57.2 52.5 55.3 49.8 60.2 52.5 62.0 57.2 60.1
S2(%) 53.3 64.9 51.4 55.2 54.4 51.4 54.1 52.8 58.9 56.3 54.7
S3(%) 51.7 67.9 55.4 52.5 53.5 52.0 55.6 57.0 60.2 59.6 62.2

unseen-S4(%) 48.2 57.6 43.8 41.3 43.8 38.3 45.6 47.6 51.7 51.5 50.4
unseen-S5(%) 45.2 60.0 44.7 46.1 45.3 44.4 52.0 44.3 53.8 48.7 49.4
unseen-S6(%) 39.6 52.4 32.6 29.5 40.1 31.4 31.7 31.9 40.8 35.7 35.2
Average(%)" 54.1 64.6 53.3 51.6 53.3 50.8 55.1 54.0 58.7 56.7 57.9

Parameters(M)# 5.0 0.94 4.3 3.5 15.3 20.6 25.7 60.5 8.1 20.3 23.0
Memory(MB)# 19.2 3.5 16.4 13.7 58.2 254.8 98.0 230.6 30.9 77.5 87.6
FLOPs (B)# 13.43 1.52 0.75 0.40 20.10 25.49 4.57 14.29 3.73 5.64 5.95

Fig. 3. The proposed novel residual-inception (NRI) deep neural network architecture.
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of multiple spectrogram inputs in this paper. In particular, we use
three spectrograms: log-Mel [54], GAM [70], and Constant Q Trans-
form (CQT) [54]. To ensure spectrograms present the same size, we
reuse the setting parameters of FFT number, Hann window size,
the hop size, and the filter number as mentioned in Section 3
and apply for three types of spectrograms. As using multiple spec-
trogram inputs, each of spectrogram is independently trained with
one back-end deep learning model. Then, predicted probabilities
obtained from individual models will be fused to achieve the best
performance. In this paper, we propose to use late fusion of prob-
abilities, referred to as PROD fusion. Let consider predicted proba-
bilities of each model as �ps ¼ ð�ps1; �ps2; . . . ; �psCÞ, where C is the
category number and the sth out of S networks evaluated. Next,
the predicted probabilities after PROD fusion
pprod ¼ ð�p1; �p2; . . . ; �pCÞ is obtained by:

�pc ¼
1
S

YS
s¼1

�psc for 1 6 c 6 C ð2Þ

Finally, the predicted label ŷ is determined by

ŷ ¼ argmaxð�p1; �p2; . . . ; �pCÞ ð3Þ
4.3. Performance comparison among DCASE baseline, the proposed
ASC baseline, the novel residual-inception network architecture with
individual spectrograms, and the ensemble of multiple spectrograms

We use DC-20-1A dataset to evaluate the novel residual-
inception network architecture and see how an ensemble of
multi-spectrogram inputs helps to further improve the ASC perfor-
7

mance. All settings and implementation are reused from
Section 3.3.

To evaluate the role of individual components in NRI network
such as the shortcut branch, the sub-kernel [1�K] and [K�1]
branches, the entire Inc-Res Block, and the Pooling Block, we con-
Fig. 4 variants of NRI network architectures and evaluate with Mel
spectrogram input: (1) the NRI with only using Dob-Inc blocks,
referred to as MEL-NRI-Dob (i.e. Three Inc-Res blocks in NRI net-
work are replaced by Dob-Inc block and the channel numbers are
remained); (2) the NRI without using sub-kernel [1�K] and
[K�1] branches, referred to as MEL-NRI w/o Sub-Ker; (3) the NRI
without using the shortcut branch, referred to as MEL-NRI w/o
Shortcut; (4) the NRI with only using global average pooling
(GAP) at Pooling Block, referred to as MEL-NRI w/ GAP.

As the experimental results show in Table 4, we can see that all
4 variants of NRI architecture outperform the proposed ASC base-
line. When Dob-Inc Blocks are replaced by Inc-Res Blocks as com-
paring between MEL-NRI-Dob and MEL-NRI, it helps to improves
by 2.6%. The performances of MEL-NRI w/o Sub-Ker, MEL-NRI w/
o Shortcut, and MEL-NRI w/ GAP with 67.3%, 67.1%, and 68.8%,
respectively also proves that it is effective to apply these compo-
nents for improving the NRI network.

We then evaluate how different spectrogram inputs and ensem-
ble of multiple spectrograms affect NRI network performance. As
experimental results are shown in Table 5, we can see that the
novel residual-inception (NRI) network trained with Mel spectro-
gram (MEL-NRI) helps to further improve the proposed ASC base-
line in Section 3 by 4.5% and significantly outperform DCASE
baseline with an improvement of 15.0%. Compare among spectro-
grams, the novel residual-inception networks trained with Mel



Table 4
Performance comparison among: The proposed ASC baseline, MEL-NRI with only using Dob-Inc blocks (MEL-NRI-Dob), MEL-NRI without using sub-kernel branches of [1�K] and
[K�1] (MEL-NRI w/o Sub-Ker), MEL-NRI without the shortcut branch (MEL-NRI w/o Shortcut), MEL-NRI with only using global average pooling (GAP) at Pooling Block (MEL-NRI
w/ GAP), and full MEL-NRI on DC-20-1A dataset.

Proposed MEL- MEL- MEL- MEL- MEL-
baseline NRI- NRI w/o NRI w/o NRI w/ NRI

Dob Sub-Ker Shortcut GAP

A(%) 73.3 73.6 76.9 73.6 72.1 77.3
B(%) 67.0 72.6 71.5 66.3 71.1 70.5
C(%) 72.6 74.7 74.8 72.0 72.3 75.7
S1(%) 64.2 63.6 68.2 69.1 69.7 69.7
S2(%) 64.9 68.8 67.9 66.4 70.9 70.6
S3(%) 67.9 68.2 70.0 71.2 70.9 71.8

unseen-S4(%) 57.6 60.6 61.5 65.2 66.4 61.5
unseen-S5(%) 60.0 64.2 62.7 64.9 68.2 66.1
unseen-S6(%) 52.4 52.4 53.0 55.2 57.6 58.8
Average(%)" 64.6 66.5 67.3 67.1 68.8 69.1

Parameters (M)# 0.94 1.9 2.8 4.2 4.3 4.3
Memory (MB)# 3.5 7.3 11.0 16.2 16.5 16.6

FLOPs (B)# 1.52 9.51 11.50 14.31 14.50 14.56
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spectrogram (MEM-NRI) and GAM (GAM-NRI) are competitive,
presenting classification accuracy of 69.1% and 65.8%, respectively.
Although the novel residual-inception networks trained on CQT
spectrogram (CQT-NRI) presents a low performance of 60.8%,
ensemble of three spectrograms (SPECs-NRI) achieves an accuracy
of 73.6%, further improve the MEL-NRI by 4.5%.

Regarding performance on different recording devices, SPECs-
NRI ensemble model significantly improves the performance on
all recording devices compared with DCASE baseline and the pro-
posed ASC baseline. The gap performance between real recording
devices (A, B, C) and synthetic devices (from S1 to S6) as well as
between unseen devices (S4, S5, S6) and seen devices (A, B, C, S1,
S2, S3) are also reduced by using ensemble of three spectrograms
(SPECs-NRI). Overall, we have proven that a combination of the
novel residual-inception network and the ensemble of multi-
spectrogram inputs is effective for ASC system to deal with the
issue of mismatched recording devices.
5. The trade off between ASC model complexity and
performance

5.1. Propose techniques to reduce the model complexity

As Table 4 and Table 5 show, the complicated architecture of
the novel residual-inception (NRI) network and the ensemble of
multiple spectrograms lead to increase the number of trainable
parameters to 12.9 M, 49.8 MB memory on devices, and 43.68
BFLOPs. As we aim to achieve low-complexity ASC systems which
are suitable for various edge devices, two constrains of the maxi-
mum memory occupied by proposed models are set: (1) 20 MB
for mobiles or large-memory devices basing on surveys in
[35,36], and (2) 128 KB for limited-memory devices such as
STM32L496@80 MHz or Arduino Nano33@64 MHz. The second
constrain of 128 KB memory is also the requirement set to chal-
lenges of DCASE 2021 Task 1A and DCASE 2022 Task 1. The models
with the memory constrains of 20 MB and 128 KB are referred to as
medium-size model (MM) and small-size model (SM) respectively
in this paper. Meanwhile, models with unlimited memory occupa-
tion is referred to as large-size model (LM).

To achieve these low-complexity models (MM and SM), we
apply three techniques of model compression: Channel reduction
(CR), channel deconvolution (CD), and quantization (Qu). In partic-
ular, we first reduce the channel number in inception layers at each
sub block of NRI network to 128, 64, 32 and 16, respectively. To
further reduce the model complexity, the channel deconvolution
technique is applied on each convolutional layer with a kernel size
8

of [K�K], which is inspired from [71,72]. Let consider Cin and Cout
are the number of input channel and output channel used at a con-
volutional layer with kernel size of [K�K] as shown in Fig. 4. We
then separate the input tensor X into four sub-tensors of
X1;X2;X3, and X4 by splitting the length of channel dimension
Cin into four same parts (0 to Cin=4;Cin=4 to Cin=2;Cin=2 to
3Cin=4, and 3Cin=4 to Cin) while remaining the other dimensions.
Then, convolutional layers with different kernel sizes as shown in
Fig. 4 are applied to learn these sub-tensors before concatenating.
By using the channel deconvolution (CD), the trainable parameters
used for a convolutional layer with kernel [K�K] is reduced to
nearly 1/8.5 of the original number of trainable parameters.

By using both channel reduction (CR) and channel deconvolu-
tion (CD), we obtain Table 6 which summaries four variants of
SPECs-NRI, referred to as SPECs-NRI-RD128, SPECs-NRI-RD64,
SPECs-NRI-RD32, and SPECs-NRI-120 KB with 2.62 M, 0.86 M,
0.36 M, and 120 K of trainable parameters, respectively. We can
see that these four variants of SPECs-NRI are considered as
medium-size model (MM) which meet the requirement of maxi-
mum 20 MB of memory occupation on devices. To meet the
requirement of maximum 128 KB of memory occupation, we apply
the quantization technique to only SPECs-NRI-120 KB (i.e. The
quantization technique helps to convert 32-bit floating point to
8-bit integer, which reduce the memory occupation to 1/4 of the
original volume), further reduce the occupied memory from
480 KB to 120 KB.
5.2. Performance of the novel residual-inception network architecture
with and without using decompression techniques

To evaluate the techniques of model compression applied on
the proposed residual-inception neural network, we again conduct
experiments on DC-20-1A dataset. All settings and implementation
are reused from Section 3.3.

As the experimental results are shown in Table 7, we can see
that applying model compression techniques CR and CD on
SPECs-NIR leads to decreases the classification accuracy slightly.
In particular, SPECs-NRI-RD128, SPECs-NRI-RD64, SPECs-NRI-
RD32, SPECs-NRI-120 KB present the accuracy of 72.9%, 72.0%,
71.3%, 71.0% compared with 73.6% of SPECs-NRI model. However,
these techniques helps to reduce the model complexity signifi-
cantly, presenting 9.9 MB and 25.86 BFLOPs, 3.3 MB and 6.72
BFLOPs, 1.4 MB and 1.8 BFLOPs, 480 KB and 0.82 BFLOPs for
SPECs-NRI-RD128, SPECs-NRI-RD64, SPECs-NRI-RD32, SPECs-NRI-
120 KB, respectively.



Table 5
Performance comparison among: DCASE baseline, our ASC baseline, the novel residual-inception network (NRI) with individual spectrograms of Mel (MEL-NRI), GAM (GAM-NRI),
or CQT (CQT-NRI), and ensemble of multiple spectrograms (SPECs-NRI) on DC-20-1A dataset.

DCASE Proposed MEL- GAM- CQT- SPECs-
baseline baseline NRI NRI NRI NRI

A(%) 70.6 73.3 77.3 77.3 61.5 80.6
B(%) 60.6 67.0 70.5 67.8 62.3 78.7
C(%) 62.6 72.6 75.7 71.1 57.1 73.9
S1(%) 55.0 64.2 69.7 68.2 62.1 74.6
S2(%) 53.3 64.9 70.6 59.4 63.6 74.2
S3(%) 51.7 67.9 71.8 70.9 61.2 76.4

unseen-S4(%) 48.2 57.6 61.5 61.2 60.9 67.3
unseen-S5(%) 45.2 60.0 66.1 63.3 60.3 71.8
unseen-S6(%) 39.6 52.4 58.8 52.7 58.1 65.2
Average(%)" 54.1 64.6 69.1 65.8 60.8 73.6

Parameters (M)# 5.0 0.94 4.3 4.3 4.3 12.9
Memory (MB)# 19.2 3.5 16.6 16.6 16.6 49.8

FLOPs (B)# 13.43 1.53 14.56 14.56 14.56 43.68

Fig. 4. Channel deconvolution (CD) for reducing trainable parameters.

Table 6
Channel numbers and model complexities after applying channel reduction (CR) and channel deconvolution (CD).

Sub blocks SPECs-NRI SPECs-NRI SPECs-NRI SPECs-NRI SPECs-NRI
-RD128 -RD64 -RD32 �120 KB

Dob-Inc Ch=128 Ch=128 Ch=64 Ch=32 Ch=16
Inc-Res 01 Ch=128 Ch=128 Ch=64 Ch=32 Ch=32
Inc-Res 02 Ch=256 Ch=128 Ch=64 Ch=32 Ch=32
Inc-Res 03 Ch=256 Ch=128 Ch=64 Ch=32 Ch=32
Fully connected 01 Ch=1024 Ch=1024 Ch=1024 Ch=1024 -
Fully connected 02 Ch=10 Ch=10 Ch=10 Ch=10 Ch=10
Parameters (M) 12.9 2.62 0.86 0.36 0.12
Memory (MB) 49.8 9.9 3.3 1.4 0.48
FLOPs (B) 43.68 25.86 6.72 1.8 0.82
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Further apply the quantization technique on SPECs-NRI-120 KB,
we achieve a very low-complexity model of 120 KB and 0.82
BFLOPs, but still perform an accuracy of 71.0%.

6. Explore acoustic event detection to improve the ASC system

6.1. Adapt an AED pre-trained model to the ASC task

To further improve ASC performance by leveraging sound event
information, we first define the task of acoustic event detection
(AED) as the up-stream task where sound events in a sound record-
9

ing are detected. The available model used for AED task is called as
the up-stream pre-trained model. We then feed spectrograms of
sound scene recordings into the pre-trained model to extract fea-
ture maps, referred to as the audio-event-based embeddings. The
embeddings are finally classified by a MLP based network into tar-
get sound scene classes. In other words, classifying the audio-
event-based embeddings using MLP based network is considered
as the down-stream ASC task. To the best our knowledge, there
are thee papers proposed various up-stream pre-trained models
which was trained on the AudioSet, the largest Audio dataset of
sound events. The first paper published by Google introduced Trill



Table 7
Performance comparison among SPECs-NRI and four variants of SPECs-NRI-RD128, SPECs-NRI-RD64, SPECs-NRI-RD32, and SPECs-NRI-120 KB w/ quantization on DC-20-1A
dataset.

SPECs-NRI SPECs-NRI SPECs-NRI SPECs-NRI SPECs-NRI
-RD128 -RD64 -RD32 �120 KB

A(%) 80.6 77.9 76.4 75.5 75.7
B(%) 78.7 75.4 74.5 72.3 72.0
C(%) 73.9 78.1 73.9 74.8 77.2
S1(%) 74.6 71.5 73.3 73.0 69.9
S2(%) 74.2 77.3 74.5 70.9 69.9
S3(%) 76.4 76.7 73.6 75.1 74.8

unseen-S4(%) 67.3 67.3 68.5 70.9 69.6
unseen-S5(%) 71.8 69.7 71.8 70.6 71.2
unseen-S6(%) 65.2 62.4 62.1 58.8 61.5
Aver. (%)" 73.6 72.9 72.0 71.3 71.0

Parameters (M)# 12.9 2.62 0.86 0.36 0.12
Memory (MB)# 49.8 9.9 3.3 1.4 0.12

FLOPs (B)# 43.68 25.86 6.72 1.8 0.82
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model [73] and Frill model [74] which reused the MobileNetV3 and
ResNet50 architectures, respectively. These two pre-trained mod-
els present the trainable parameters of 98.1 M and 38.5 M, respec-
tively. The second paper introduced a VGGish network
architecture, referred to as openL3 model [75,76], which presents
5.3 M trainable parameters. Meanwhile, the third paper [77] pre-
sented a wide range of up-stream pre-trained networks using
VGGish, ResNet, MobileNet, DaiNet, LeeNet, Res1dNet, and Waveg-
ram based architectures. As we aim to achieve a low complexity
model less than 5 M of trainable parameters or maximum occupy-
ing 20 MB memory on devices or mobiles in this paper, we there-
fore reuse the pre-trained MobinetV2 network from [77] which
presents the smallest memory footprint of 4.1 M trainable param-
eters (occupying 16.0 MB memory on devices). Notably, as all
available up-stream pre-trained models recently mentioned are
larger than 15 MB, we do not aim to achieve a low complexity
model with 128 KB memory occupation in this section.

Given the up-stream pre-trained MobileNetV2 model in [77],
we feed Mel spectrograms of sound scene recordings into this
model to extract sound-event-based embeddings. The extracted
embeddings are the feature maps at the global pooling layer of
the up-stream pre-trained MobileNetV2 model. We then use the
MLP-based classification as shown in the lower part of Table 2 to
classify these sound-event-based embeddings into C target sound
scene categories. This down-stream ASC task is referred to as DS-
ASC-MobV2. The predicted probabilities from the down-stream
ASC task (DS-ASC-MobV2) is finally fused with the probabilities
obtained from the novel residual-inception based network of
SPECs-NRI-RD64 (i.e. The PROD fusion method as mentioned in
Section 4.2 is used to fuse the probability results). As the pre-
trained MobileNetV2 and SPECs-NRI-RD64 networks present
4.1 M and 0.86 M of trainable parameters respectively, the ensem-
ble of these two models presents 4.96 M of trainable parameter
which satisfies our target of low complexity ASC model less than
5 M of trainable parameters or occupying 20 MB memory.

6.2. Performance of ASC models with or without leveraging an AED
pre-trained model

To evaluate the role of sound event information to improve ASC
performance, we continue using DC-20-1A dataset. All settings and
implementation are reused from Section 3.3.

As experimental results are shown in Table 8, the down-stream
model of DS-ASC-MobV2 achieves an overall accuracy of 58.9%. The
performance is nearly equal to CQT-NRI and significant lower than
MEL-NRI and GAM-NIR (CQT-NRI, MEL-NRI, and GAM-NIR perfor-
mance are shown in Table 5). This indicates that direct training
on spectrogram input is better than the approach of using up-
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stream pre-trained models with the large-scale Audio dataset of
sound event.

When we combine DS-ASC-MobV2 with SPECs-NRI-RD64, we
can achieve a low complexity model with 4.96 M of trainable
parameters (19.4 MB memory occupation). The combination of
DS-ASC-MobV2 and SPECs-NRI-RD64, medium-size model (MM),
outperforms the large-size model of SPECs-NRI (73.9% compared
to 73.6%) and presents a lower model complexity (19.3 MB com-
pared to 49.8 MB and 7.12 BFLOPs compared to 43.78 BFLOPs).
7. Propose a visualization method for well presenting a sound
scene context

7.1. Motivation for the developing a visualization method to present a
sound scene context

The motivation to develop a visualization method to compre-
hensively present a sound scene context is driven from two main
reasons. First, as the literature review of the ASC task in Section 1
presents, current ASC tasks are specific, defined on certain datasets,
and considered as an individual task. Indeed, given an ASC model,
we can only acknowledge that how an input audio recording is
close to a certain scene context basing on the predicted probabili-
ties. Therefore, when the ASC result is used as the input for other
tasks in a complex system, it is hard to give a decision if the pre-
dicted probabilities are not significantly different. Additionally,
currently proposed ASC models have presented limited perfor-
mances (i.e. The best models proposed for ASC tasks in DCASE chal-
lenges cannot achieve more than 90% classification accuracy) due
to various challenges of mismatch recording devices, constrains
of low-complexity model, or very similar sound scene contexts
(e.g. ‘Pedestrian street’ and ‘traffic street’ in DCASE challenges or
‘firework event’ and ‘riot context’ in Crowded Scenes dataset). As a
result, applying the ASC task as a main component or as a sub func-
tion in real-life applications is limited or shows ineffective if only
predicted probabilities of sound scenes are provided from ASC
models.

Second, it is fact that sound events and sound scene in a record-
ing present a high correlation. For an instance, ‘gun’ sound can be
only detected in a ‘riot context’ or a group of sound events such
as ‘wind, grass’, and ‘bird song’ is usually detected ‘in a park’. There-
fore, it is potential to use sound event detection (SED) results to
enhance an ASC system. Indeed, this has already been proven in
the previous Section 6.2 or in some recent published papers
[37,38]. However, these works only focus on how to enhance the
accuracy performance instead of leveraging detected sound events
to present the sound context more comprehensively.



Table 8
Performance comparison among MEL-NIR, SPECs-NRI-RD64, Down-stream ASC task (DS-ASC-MobV2), and ensemble of SPECs-NRI-RD64 and DS-ASC-MobV2 on DC-20-1A
dataset.

SPECs-NRI SPECs-NRI-RD64 DS-ASC-MobV2 DS-ASC-MobV2,
SPECs-NRI-RD64

A(%) 80.6 76.4 65.8 78.8
B(%) 78.7 74.5 58.7 74.5
C(%) 73.9 73.9 67.5 79.6
S1(%) 74.6 73.3 54.9 74.5
S2(%) 74.2 74.5 52.7 76.9
S3(%) 76.4 73.6 57.0 77.0

unseen-S4(%) 67.3 68.5 56.1 68.8
unseen-S5(%) 71.8 71.8 58.2 70.3
unseen-S6(%) 65.2 62.1 59.1 64.8
Aver. (%)" 73.6 72.0 58.9 73.9

Parameters(M)# 12.9 0.86 4.1 4.96
Memory (MB)# 49.8 3.3 16.0 19.3

FLOPs (B)# 43.68 6.72 0.40 7.12
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These two reasons recently mentioned inspires us to propose a
visualization method (A demo is available2), which not only reports
predicted probabilities of sound scene contexts but also visually pre-
sents a sound scene context more comprehensively by leveraging
sound event information.
7.2. Dataset and the use case definition

To evaluate the proposed visualization method, we first define a
dataset and propose a case study. Regarding the evaluating dataset,
we combine DC-20-1A [42] and Crowded Scenes [39] to form a
new dataset of 15 sound scene contexts: ‘Airport’, ‘Bus’, ‘Metro’,
‘Metro-Station’, ‘Park’, ‘Public-Square’, ‘Shopping-Mall’, ‘Street-Pedes
trian’, ‘Street-Traffic’, ‘Tram’, ‘Music-Event’, ‘Sport-Event’, ‘Firework’,
‘Noise-Street’, and ‘Riot’. These 15 sound scenes are then grouped
into 8 main categories: ‘Daily Indoor’ (‘Airport’, ‘Shopping-Mall’,
‘Metro-Station’), ‘Daily Outdoor’ (‘Park’, ‘Public-Square’, ‘Street-Pedes
trian’, ‘Street-Traffic‘), ‘Daily Transportation’ (‘Bus’, ‘Metro ‘Tram’),
‘Music-Event’, ‘Sport-Event’, ‘Firework’, ‘Noise-Street’, ‘Riot’, which is
referred to as 8-sound-scene-context dataset. Given the 8-sound-
scene-context dataset, we define a specific task (the case study)
which satisfies three requirements of: (1) detect a riot context
from the 8-sound-scene-context dataset recently defined (i.e. In
the other words, the requirement (1) is a task of sound scene clas-
sification on 8-sound-scene-context dataset), (2) low-complexity
classification model with less than 5 M trainable parameters (ap-
proximately 20 MB memory occupation using 32-bit floating point
to present 1 model trainable parameter) which is potential to inte-
grate into a wide range of edge devices and mobiles, and (3) a visu-
alization method for comprehensively presenting statistic
information of sound events which show high-relevant to the riot
context detected. Experimental settings for evaluating the pro-
posed visualization method are reused from Section 3.3.
7.3. Propose an audio based system for detecting and presenting a riot
context

To meet the requirements of (1) and (2), we apply the results
from Section 6. In particular, we use two models of SPECs-NRI-
RD64 and DS-ASC-MobV2 as shown in Table 8, presenting 4.96 M
of trainable parameters (19.4 MB memory occupation), to train
and evaluate on the 8-sound-scene-context dataset. While SPECs-
NRI-RD64 is only for the ASC task, DS-ASC-MobV2 is used not only
for improving the ASC task as experimental results in Section 6.2
but also for detecting sound events occurring in the sound context
2 https://zenodo.org/record/7366699#.Y4J2HdLMJhG
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(i.e. The up-stream task). Given the result of the sound scene clas-
sification and the sound events detection, we meet the require-
ment (3) by generating figures to describe the relationship
between sound events and sound scene.

To better describe sound events which present high-relevant to
riot contexts regarding the requirement (3), we propose two meth-
ods to separate sound events into certain groups. The first method
is presented in Table 9 which separates 527 types of sound events
defined in AudioSet dataset into three main different alarming
levels. In particular, we have three levels, namely Red Level, Yellow
Level, and Green Level as shown in Table 9. The Red Level presents
very dangerous and rare sound events which are only found in
violent-relevant contexts. The sound events with Yellow Level
cause a negative or annoying felling which are separated into four
sub-categories: sound events made by individual human, sound
events from a crowd, natural sound events, and sound events from
machines or things. The other sound events are grouped into the
Green Level, which is considered as usual events in daily life. In
the second method, we separate 527 types of sound events into
7 main categories: Human, Music, Things, Acoustic, Nature,
Machine or Vehicle, and Animal. While the first grouping method
is driven from our statistics on sound events occurring in riot con-
text, which is conducted on riot recordings in Crowded Scene data-
set, the second method is based on the ontology of AudioSet
dataset introduced by Google in [78].

Overall, we expect that a sound scene of a riot context in the
proposed case study can be presented more comprehensively by
exploring both sound scene information (e.g. Predicted probabili-
ties of a sound recording) and sound event information (e.g. Statis-
tics and visualization of sound events in a sound recording).

7.4. Experimental results

Fig. 5 presents a confusion matrix of 8 classes which is the clas-
sification result of SPECs-NRI-RD64 and DS-ASC-MobV2 on 8-
sound-scene-context dataset. As Fig. 5 shows, the accuracy on each
class is larger than 80% and the overall accuracy achieves 90.9%. As
the proposed model (SPECs-NRI-RD64 and DS-ASC-MobV2) proves
high performance and presents a low memory footprint of 19.4 MB
memory occupation on the 8-sound-scene-context dataset, the
model is very potential to apply on various mobiles or edge
devices.

To present how results of sound scene classification and statis-
tic information of sound events are comprehensively presented via
the proposed visualization method, we set up an 80-s recording
which presents different sound scene contexts: ‘in metro’ from 0
s to 10 s, ‘in metro station’ from 10 s to 20 s, ‘in traffic street’ from
20 s to 30 s, ‘in shopping mall’ from 30 s to 40 s, ‘in very noise street’



Table 9
527 sound events and alarming level definition from AudioSet dataset.

Levels Sound events

Red Level ‘Explosion’, ‘Gunshot, gunfire’, ‘Machine gun’,
‘Fusillade’, ‘Artillery fire’, ‘Cap gun’, ‘Eruption’,
‘Fire’, ‘Fireworks’, ‘Firecracker’

Yellow Level ‘Wail,moan’, ‘Shout’, ‘Bellow’, ‘Whoop’, ‘Yell’, ‘Children
(individual

person)
shouting’, ‘Screaming’, ‘Crying, sobbing’, ‘Baby cry, infant
cry’

Yellow Level ‘Cheering’, ‘Crowd’, ‘Run’, ‘Applause’, ‘Hubbub,
(a crowd) speech noise, speech babble’, ‘Battle cry’

Yellow Level ‘Thunderstorm’, ‘Thunder’
(from nature)
Yellow Level ‘Basketball bounce’, ‘Crackle’, ‘Machanisms’,
(thing and ‘Detal drill’, ‘Buzzer’, ‘Hammer’, ‘Jackhammer’,

machine sounds) ‘Power tool’, ‘Drill’, ‘Burst, pop’, ‘Crack’, ‘Skidding’,
‘Toot’, ‘Race car, auto racing’, ‘Tire squeal’, ‘Air brake’,
‘Traffic noise, roadway noise’, ‘Engine knocking’,
‘Engine knocking’, ‘Engine starting’, ‘Breaking’,
‘Bouncing’,
‘Scratch’, ‘Thump, thud’, ‘Bang’, ‘Slam’, ‘Knock’, ‘Tap’

Green Level Other events

Fig. 5. Confusion matrix results for the ASC task on 8-sound-scene-context dataset.
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from 40 s to 50 s, and finally ‘in a riot context’ from 50 s to 80 s.
Given the audio recording, we fed into the proposed the system
(SPECs-NRI-RD64 and DS-ASC-MobV2), present results as shown
Fig. 6–9, and Table 10.

We can see that Fig. 6 presents sound scenes detected on each
5-s segment. When the sound context changes at a certain time
(e.g. Example: From ‘in metro’ to ‘in metro station’ at the tenth sec-
ond), Fig. 6 shows both sound scenes before and after this time
point. The riot context is correctly detected and marked with the
red color as shown from the fiftieth second to the eightieth second
in Fig. 6. As the riot context is detected from the fiftieth second to
the eightieth second, we check the groups of alarming sound
events recently defined in Table 9. As Fig. 7 and 8 show, we can
see that both Red Level alarming sound events and Yellow Level
alarming events are detected from the fiftieth second to the eight-
ieth second. While Fig. 7 presents the number of alarming events,
Fig. 8 shows the ratios of these alarming sound events on each 5-s
segment. We also see that the ‘Alarming’ sub-group of Yellow Level
events mainly appear in the riot context detected from the fiftieth
second to the eightieth second. The Fig. 9 indicates that almost
sound events related to machines/devices or human occur in a riot
context. Finally, Table 10 presents both popular and distinct sound
events occurring in each 5-s recording duration together with pre-
dicted probabilities and scores.
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Our above experimental results have proven that a riot context
can be indicated and comprehensively analyzed on a wide range of
devices or mobiles by using models of SPECs-NRI-RD64, DS-ASC-
MobV2 and the proposed visualization method. By early detect
certain riot contexts, it helps to predict a possible large-scale
migration or trigger immediately a warning for a certain region
(e.g., a violent riot is occurring at the street/district/country X)
before a mainstream media (e.g. Television channels, newspaper,
etc.) reports. Given the comprehensive analysis of our case study,
an application of detecting and presenting a certain sound scene
context can be feasibly developed and implemented on a wide
range of edge devices and mobiles.

Compare to other visualization methods provided for analyzing
ASC systems [79,80], our method presents some advantages. First,
we successfully align the sound scene context and the sound event
statistic information (i.e. The number of sound events, the percent-
age of group of sound event, etc.) for each short 5-s duration that
helps to indicate a matching or an anomaly between the sound
scene and the sound events (i.e. For example, a ‘gun’ sound in a
shopping mall is considered as an anomaly). Second, not only pop-
ular sound events (i.e. ‘Crowded sound’, ‘human speech’, etc. in a ‘riot
context’) but also distinct sound events in a sound scene context
(i.e. ‘Explosion’ sound in a ‘riot context’) are indicated in our visual-
ization method. Finally, as the visualization method explores
results obtained from the medium-size model (MM) with less than
20 MB memory footprint occupation, the visualization method is
feasibly integrated into a wide range of edged devices and mobiles.
These advantages help our proposed visualization method not only
present a sound scene context more comprehensively but also
potentially apply to a wide range of applications such as audio-
based anomaly detection, audio-based observation, etc. on various
target devices.
8. Compare to the state-of-the-art ASC systems

Before comparing to the state-of-the-art ASC systems, we pre-
sent our main proposed systems with the trade-off between accu-
racy performance and trainable parameters in Fig. 10. As Fig. 10
shows, although NRI based architectures without applying model
decompression such as MEL-NRI, GAM-NRI, SPECs-NRI outperform
both the proposed baseline and DCASE baseline, they present large
models. However, when the model decompression techniques are
applied, we can achieve: (1) very low-complexity model (SPECs-
NRI-120 KB); (2) a wide range of low-complexity model (SPECs-
NRI-120 KB, SPECs-NRI-RD32, SPECs-NRI-RD64) which not only
outperform the proposed baseline and DCASE baseline but also
present lower trainable parameters; (3) a combined model (DS-A
SC-MobV2 + SPECs-NRI-RD64) which can be applied for two tasks
of ASC, AED and presents lower than 5 M trainable parameters.
Notably, all proposed models, which apply NRI base architecture,
multiple spectrogram, and model decompression, achieve perfor-
mances larger than 70%.

To compare with the state-of-the-art ASC systems, we propose
three models in this paper: large-size model (LM) which combines
SPECs-NRI and DS-ASC-CNN14 (i.e. DS-ASC-CNN14 is the down-
stream ASC task using the up-stream pre-trained CNN14 model
in [77]); medium-size model (MM) which combines SPECs-NRI-
RD64 and DS-ASCMobv2 presenting 4.96 M of trainable parameter
and occupying 19.4 MB memory (i.e. This model was evaluated in
the upper sections of 7 and 6); small-size model (SM) which used
SPECs-NRI-120 KB with quantization presenting 120 K of trainable
parameters, occupying 120 KB memory, and consuming 0.82
BFLOPs (i.e. This model was evaluated in the upper Section 5).
These three models are evaluated on a wide range of ASC datasets
mentioned in Section 2: DC-18-1A, DC-18-1B, DC-19-1A,



Fig. 6. Visualization method: Presenting the accuracy of detected sound scene contexts and the transferring between two sound contexts.

Fig. 7. Visualization method: Presenting Red and Yellow alarming sound events numbers on each 5-s segment.
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Fig. 8. Visualization method: Presenting percentage of Red, Yellow, and Green sound events numbers on each 5-s segment.

Fig. 9. Visualization method: Presenting topology group of sound events on each 5-s segment.
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Table 10
Popular and distinct sound events present from 60 s to 80 s.

Duration Sound Scenes (Probabilities) Popular Sound Events (Scores) Distinct Sound Events(Scores)

. . . . . . . . . . . .

60s to 65s riot (99.1%), outdoor (0.4%), firework (0.3%), .. Speech (0.85), Outside + urban (0.2), .. Explosion (0.1), Spray (0.03)
65s to 70s riot (99.5%), outdoor (0.2%), firework (0.2%), .. Speech (0.8), Outside + urban (0.15), .. Firework (0.4), Firecracker (0.2)
70s to 75s riot (68.5%), indoor (31.0%), sport atmosphere (1.5%), .. Speech (0.75), Outside + urban (0.15), .. Explosion (0.2), Firecracker (0.2)
75s to 80s riot (65.5%), indoor (32.0%), sport atmosphere (3.0%), .. Speech (0.7), Outside + urban (0.2), .. Slam (0.1)

Fig. 10. Model Size (Parameters) vs. Accuracy (%). The trade-off between model size
and model performance evaluating on DCASE 2020 Task 1A Development set
among DCASE baseline, our proposed baseline, individual spectrograms (CQT, GAM,
MEL) with our proposed novel residual-inception (NRI) architecture (CQT-NRI,
GAM-NRI, MEL-NRI), downstream ASC task finetuning from the up-stream task of
audio detection (DS-ASC-MobV2), and various NRI architectures using ensemble of
multiple spectrograms and model decompression (SPECs-NRI-120 KB, SPECs-NRI-
RD32, SPECs-NRI-RD64, SPECs-NRI-RD128, SPECs-NRI, DS-ASC-MobV2 + SPECs-
NRI-RD64).
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DC-19-1B, DC-20-1A. For DCASE 2021 Task 1A and DCASE 2022
Task 1 challenges, we report the results which are from our sub-
mitted models presented in [119,120], respectively. Notably, the
submitted models also make use of CNN-based network architec-
ture and model compression techniques of channel reduction
(CR), channel deconvolution (CD), and Quantization (Qu.). As
experimental results are shown in Table 11, we first compare our
proposed systems with the state-of-the-art ASC systems without
a limitation of model size. We can see that our large-size model
(LM) outperforms the state-of-the-art ASC systems in DC-18-1B,
DC-19-1B, achieves the top-2 in both DC-18-1A and DC-20-1A,
and occupies the top-4 in DC-19-1A. Although the accuracy perfor-
mance of our proposed medium-size model (MM) slightly reduces
as this model is constrained by maximum 5 M of trainable param-
eter and occupying 20 MB memory to be able to apply on a wide
range of edge devices and mobiles, the results are still very com-
petitive to the state-of-the-art systems (top-3 in DC-18-1A, top-1
in DC-18-1B, top-6 in DC-19-1A, top-2 in DC-19-1B, and top-4 in
DC-20-1A). Regarding our proposed small-size model (SM) which
is constrained by maximum 128 KB memory occupation, this
model is still in top-10 compared to the state-of-the-art systems
on all evaluating datasets. Specially, this model achieves top-3
15
and top-4 in DC-19-1B and DC-20-1A. Our submitted systems for
DCASE 2021 Task 1A and DCASE 2022 Task 1 challenges (These
challenges requires low complexity model with the same constrain
of maximum 128 KB memory occupation) also achieve top-6 and
top-4 accuracy rankings, respectively. We then compare our
small-size model (SM) to the state-of-the-art ASC systemwith con-
strains of less than 128 K trainable parameters and without using a
pruning technique for model compression. While the first con-
strain of 128 K trainable parameters (or 128 KB memory occupa-
tion using 8-bit quantization) matches the requirements of the
recent DCASE 2021 and DCASE 2022 challenges to be compatible
for limited memory devices, the second constrain helps to make
sure that proposed models can be directly deployed on target
devices and matches the DCASE 2022 challenge ’s requirement.
As Table 12 shows, our proposed SM system outperforms the state
of the art on the largest ASC dataset of DC-20-1A. Notably, our SM
model as well as other proposed ASC systems in this paper report
the number of floating point operations (FLOPs) which is not men-
tioned in recently published papers.
9. Conclusion and future work

This paper has presented a comprehensive analysis of acoustic
scene classification (ASC) and achieved two main outcomes. First,
by using multiple techniques: a novel inception-residual based
network architecture, an ensemble of multiple spectrogram inputs,
ASC down-stream task inherited from the up-stream SED task, and
model compression methods, we successfully developed very com-
petitive ASC systems compared to the state of the art on almost
challenging ASC datasets. Among our proposed ASC systems, two
low-complexity models of medium-size model (19.3 MB memory
occupation) and small-size model (128 KB memory occupation)
are compatible for real-life applications on a wide range of edge
devices and mobiles. This effectively helps to create a benchmark
to compare among ASC models. Second, we propose an effective
visualization method to present a sound scene context by explor-
ing both sound events and sound scene information.

For the future works, the teacher-student scheme will be inves-
tigated. By using the teacher-student scheme, a low-complexity
ASC model, which is considered as the student, is potentially
improved by leveraging knowledge distilled from the teacher.
Additionally, techniques of frequency and time normalization
applied to feature maps, which proved effective for the ASC task
[28], also need to be deeply analyzed.
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Table 11
Compare our proposed ASC systems (Large model (LM) with SPECs-NRI and DS-ASC-CNN14; Medium Model (MM) with SPECs-NRI-64 and DS-ASC-Mobv2, and Small Model (SM)
with SPECs-NRI-120 KB w/ quantization; Submitted models: Models submitted to DCASE 2021 and 2022 challenges) to the state-of-the-art systems on various sound scene
datasets.

DC-18-1A Acc.% DC-18-1B Acc.% DC-19-1A Acc.% DC-19-1B Acc.% DC-20-1A Acc.% DC-21-1A Acc.% DC-22 Acc.%
(dev. set) (dev. set) (dev. set) (dev. set) (dev. set) (test. set) (test. set)

Wang [81] 72.4 DCASE
baseline

45.6 DCASE
baseline

63.3 DCASE
baseline

47.7 Jung [38] 70.4 top-1 76.1 top-1 60.8

Zhao [82] 72.6 Tchorz
[83]

53.9 Sun [84] 75.9 Wang [85] 55.2 Shim [86] 71.3 top-2 73.1 top-2 59.7

Zhao [87] 72.7 Shefali
[88]

56.2 Wang
[81]

75.7 Jiang [89] 64.2 Kim [90] 71.6 top-3 72.1 top-3 56.3

Phaye [17] 74.1 Zhao [91] 63.3 Jung [92] 76.2 Primus [8] 65.1 Zhao [93] 72.2 top-4 71.8 top-4 55.2
Jung [94] 74.8 Truc [14] 63.6 Javier [95] 76.7 McDonnell

[96]
66.3 Choi [97] 72.3 top-5 70.1 top-5 54.9

Hossein [9] 76.8 Truc [98] 64.7 Cho [99] 77.2 Zhao [93] 66.5 Liu [100] 73.1 top-6 69.6 top-6 54.7
Heo [101] 77.4 Truc [102] 66.1 Mars

[103]
79.3 Song [104] 70.3 Koutini

[19]
73.3 top-7 68.8 top-7 53.8

Hou [105] 77.4 Dat [106] 67.5 Choi [97] 81.1 Michal [107] 74.0 Xing
[108]

73.3 top-8 68.5 top-8 52.7

Yuanbo [109] 77.4 Yang
[110]

67.8 Wang
[111]

82.6 Suh [16] 74.2 top-9 68.3 top-9 52.7

Koutini [112] 78.1 Wang
[113]

69.0 Huang
[114]

83.1 Ma [21] 75.0 top-10 68.1 top-10 51.7

Yuanbo [109] 78.1 Lam [115] 70.6 Liu [116] 83.1 Wang
[15]

81.8

Octave [117] 79.3 Koutini
[112]

83.7

Yang [118] 79.8
Our LM 79.3 Our LM 73.3 Our LM 81.3 Our LM 75.1 Our LM 75.4 Our 69.6 Our 55.2
Our MM 77.8 Our MM 73.0 Our MM 78.5 Our MM 70.5 Our MM 73.9 Submitted Submitted
Our SM 71.6 Our SM 66.7 Our SM 73.5 Our SM 66.6 Our SM 71.0 Model

[119]
Model
[120]

Table 12
Compare our proposed ASC system (SM) to the state-of-the-art ASC systems on
DCASE 2021 Task 1A Development dataset with the constrains: less than 128 K
parameters and without using pruning techniques

Authors Systems Acc. (%)" Parameters (K)#
Hee [121] ResNetSE-KD 70.5 63.6

AMFM-KD 69.7 65.4
Liu [122] FR_agm 68.2 106

Onebit_agm 68.0 42.5
Weight_qz 45.4 119

Seo [123] Fusion 69.0 126.5
Fan [124] Res-attention 69.7 93.3

Grzegorz [125] GhostNet 58.8 8.3
LSTM 60.8 95.1

Xie [25] TC-SK baseline 58.2 20.9
TC-SK(AM) 59.9 20.9

Kim [126] RFN 63.7 8.1
Xing [127] CNN 70.6 64

Our SM system NRI 71.0 120
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