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Abstract

Although widely used, standard game-theoretic approaches to security games face severe shortcomings, being the common knowledge
assumption a critical one. Adversarial Risk Analysis (ARA) is an alternative modeling framework that mitigates such limitations.
However, from a computational perspective, ARA is much more involved than its game theoretical counterparts. We propose an
approach for finding ARA solutions to security games represented as bi-agent influence diagrams that is based on augmented
probability simulation. We motivate this approach using two simple cases: sequential and simultaneous defend-attack models. We next
provide the general framework and illustrate it in handling risks in a cybersecurity setting.
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1. Introduction

Security games provide a flexible and strong modeling
framework for strategic and operational defense and
homeland security problems, as argued in Brown et al.
(2006), Zhuang and Bier (2007), Brown et al. (2008) or
Hausken (2011). These authors illustrate the analysis of
security games from a standard game theoretic perspec-
tive based on approximating Nash equilibria and related
refinements.

The common knowledge assumptions underlying such
game theoretic approaches, critically reviewed in e.g.
Raiffa et al. (2002) or Hargreaves-Heap and Varoufakis
(2004), constitute a shortcoming in the security domain.
In most games, it is assumed that agents know not only
their own payoffs, preferences, beliefs and possible ac-
tions, but also those of their opponents. In games of incom-
plete information (Harsanyi, 1967), it is typically assumed
that each agent has a joint probability distribution over
their opponents’ types which is known by all the players.
Such assumptions allow for a symmetric joint normative

analysis in which players maximise their expected util-
ities, and expect other players to do the same. However,
in defense and homeland security, agents will not gener-
ally have so much knowledge about their opponents as
players try to hide information. Adversarial Risk Analysis
(ARA), Rios Insua et al. (2009), is an alternative model-
ing framework which mitigates these common knowledge
assumptions. Rather than addressing the problem simul-
taneously for all agents, ARA provides prescriptive support
to one of the decision makers, which we shall refer to as the
defender (she), seeking for actions that maximize her ex-
pected utility: Nash equilibria notions are abandoned and
the defender’s problem is viewed as a decision analytic one
instead. However, procedures which employ the game the-
oretic structure are used to estimate the probabilities of the
opponent’s (referred to as the attacker, he) actions. ARA
thus make operational the Bayesian approach to games,
as sketched in Kadane and Larkey (1982) or Raiffa (1982).

A main motivation for ARA comes from security and
counter-terrorism analysis. Since its introduction, it has
been used to model a variety of problems such as network
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routing for insurgency (Wang and Banks, 2011), interna-
tional piracy (Sevillano et al., 2012), urban security re-
source allocation (Gil et al., 2016), adversarial classifica-
tion (Naveiro et al., 2019), counter-terrorist online surveil -
lance (Gil and Parra-Arnau, 2019), cyber-security (Rios In-
suaetal.,2019), insider threat modelling (Joshietal., 2020)
and combat modeling enhancement (Roponen and Salo,
2015), to name but a few.

However, a major problem with the implementation of
ARA refers to its computational issues since it essentially
entails a two-stage approach in which we first simulate
the attacker’s problem to compute a probabilistic forecast
of the adversary’s actions and then use that forecast to op-
timize the defender’s problem. In Ekin et al. (2022), aug-
mented probability simulation (APS, Bielza et al. (1999))
was explored as a solution method for simple sequential
defend-attack games from an ARA perspective. In partic-
ular, it was shown that APS could be more efficient than
standard Monte Carlo based techniques in situations in
which the cardinality of the decision sets of the agents
intervening in the security game is very big.

We present here how APS may be used to solve gen-
eral security games described through bi-agent influence
diagrams (BAIDs) (Banks et al., 2015) from an ARA per-
spective. For this, we first provide a brief introduction to
APS (Section 2), and explain how this solution approach
can be utilized for solving sequential defend-attack (Sec-
tion 3) and simultaneous defend-attack (Section 4) games.
Section 5 sketches the analysis for general BAIDs. We end
up with an experiment illustrating the proposed approach
(Section 6) and a brief discussion (Section 7).

Our aim is thus to support the defender in her deci-
sion making. For this, we need to forecast the attacker’s
intentions. Many different attacker rationalities may be
considered in the ARA framework, see Rios Insua et al.
(2016). However, we circumscribe here the defender to
be a level-2 thinker, in the Stahl and Wilson (1995) sense:
she will ponder how the attacker’s strategy would adapt
to her own strategy but presume that he will not conduct
likewise. Thus, we assume that the attacker is an expected
utility maximiser. We could predict his actions by finding
his maximum expected utility policy; however, the uncer-
tainty in our assessments about the attacker’s probabili-
ties and utilities propagates to his optimal decision that
becomes random, providing us with the required proba-
bilistic forecast over the attacks.

2. Augmented Probability Simulation

In decision analysis settings, the goal is usually to find
an action or set of actions that maximize the expected
utility of the decision maker. In general, expected utility
cannot be computed analytically and needs to be approx-
imated. Most solution methods proceed by first estimat-
ing the expected utility for every possible action (usually
through Monte Carlo integration) and then optimizing
such estimate. Instead, APS solves for expected utility

maximization by converting the tasks of estimation and
optimization into simulation from an augmented distri-
bution over the joint space of decisions and outcomes.
Suppose that we aim to maximize the expected utility
¥(d) = fu(d,o) - p(6ld)de, where 0 is a random out-
come whose distribution is p(81d) and u(d, 0) is the util-
ity perceived when choosing d and obtaining outcome 6.
APS stems from the observation that if the utility is non-
negative and integrable, we can define the augmented dis-
tribution n(d, 6)ocu(d, ) - p(6/d) on the augmented space
of decisions and outcomes. Then, under mild conditions,
the mode of the marginal augmented distribution in d
coincides with the maximum expected utility solution.
This suggests a strategy to compute the optimal decision
based on simulating from the augmented probability dis-
tribution (for which Markov chain Monte Carlo simulation
methods French and Insua (2000) are instrumental) and,
then, assessing the marginal mode using mode estimation
methods Chacon (2020).

3. Sequential Defend-Attack games
3.1. Basic template

Drawing on Ekin et al. (2022), this section sketches how
APS-based methods can be utilized for finding optimal
defenses in sequential defend-attack games under incom-
plete information. For illustration purposes, we briefly
sketch also the complete information case.

Assume a Defender (D, she) who chooses her defense
d € D, where D is her set of feasible alternatives. After
having observed it, an Attacker (4, he) chooses his attack
a € A, with A being his set of available alternatives. The
consequences of the interaction for both agents depend
on a random outcome 0 € ©, with @ the space of outcomes.
Figure 1 displays a template for the corresponding BAID
(Banks et al., 2015). Arc D-A reflects that the Attacker ob-
serves the Defender’s decision. As a motivating example,
suppose that a defending organisation decides its protec-
tion level against, say, a cyber-attack. An attacking or-
ganisation observes such protection level and decides its
attack intensity. The attack may be successful or not de-
pending on its intensity and the protection level chosen by
the defender. Increasing protection level (attack intensity)
entail higher costs for the defender (attacker).

The agents have their own assessment of the probabil -
ity of the random outcome, respectively modeled through
pp(@ld, a) and p,(6ld, a). The Defender’s utility up(d, 0) is
a function of her chosen defense and the outcome. Simi-
larly, the Attacker’s utility function is u,(a, 9).

3.2. Complete information. Game theoretic solution

In the standard complete information setup, the basic
game-theoretic solution does not require A to know D’s
probabilities and utilities, as he observes her actions.
However, the Defender must know (u,4, p4), the common
knowledge assumption in this case. Then, both agents’
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Figure 1. Template for basic two player sequential defend-attack game
BAID. White nodes affect solely the Defender; grey nodes affect only the
Attacker; striped nodes affect both agents.

expected utilities Y5(d,a) = fuy(a,0)pa(6ld,a) do and
¥p(d,a) = {up(d,0)pp(0ld, a)de can be computed. The
Attacker’s best response to D’s action d, is a*(d) =
argmax,. 4 ba(d,a). Such response is used to find
the Defender’s optimal game-theoretic action df; =
argmax., Vp(d,a*(d)). The pair (di, a*(diyp)) is a
Nash equilibrium and, indeed, a sub-game perfect equi-
librium (Hargreaves-Heap and Varoufakis, 2004.).

In case of multiple best responses for the attacker given
some defender action d, a*(d) becomes a set. Ties are gen-
erally broken either choosing the most favorable attack
for the defender, leading to a strong Stackelberg equilib-
rium (SSE) or choosing the worst attack for the defender,
leading to a weak Stackelberg equilibrium. In what follows,
whenever necessary, we shall assume that ties are broken
in favor of the defender, the standard solution in security
games (Korzhyk et al., 2011).

3.3. Incomplete information. ARA solution

As discussed in the introduction, the complete informa-
tion assumption will not hold in many security scenar-
ios. When this is the case, the problem may be handled
as an incomplete information game. The most common
approach in such context approximates Bayes-Nash equi-
libria, see Hargreaves-Heap and Varoufakis (2004) for de-
tails. Alternatively, we use a decision analytic approach
based on ARA, that facilitates the defender to acknowl-
edge the uncertainty she might have about the attacker’s
judgements (uy, pa). The Defender’s problem is depicted
in Figure 2a as an influence diagram, where A’s action
appears as an uncertainty. With this, D’s expected utility
isyp(d) = §¥p(d, a) pp(ald) da. Computing this requires
estimating pp(ald), D’s assessment of the probability that
the Attacker will choose a after having observed d. Then,
her optimal decision is djp, = argmax;.,, Pp(d).
Eliciting pp(ald) is complex, as it possesses a strate-
gic element. It is facilitated by analyzing A’s problem
from D’s perspective (Figure 2b). In order to accomplish
this, the defender would use all information and judg-
ment available about A’s utilities and probabilities. How-
ever, instead of using point estimates for u, and p, to find
A’s best response to d, as in Secion 3.2, her uncertainty
about the attacks would derive from modeling (ug, ps)
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(a) Defender’s decision problem.

(b) Defender analysis of Attacker problem.

Figure 2. Influence diagrams for Defender and Attacker problems.

through a distribution F = (Uy, P4) on the space of util-
ities and probabilities. With no loss of generality, as-
sume that U, and P, are defined on a common probabil-
ity space (Q, F, P) with atomic elements w € Q (Chung,
2001). This induces a distribution over the Attacker’s ex-
pected utility 4 (d, a), where the random expected utility
would be ¥’ (d, a) = {UZ’ (a, )Py’ (6ld, a) do. In turn, this
leads to a random optimal alternative defined through
A*(d)® = argmax,_, ¥’ (d, x). Then, the Defender would
findpp(ald) = Pr[A*(d) = a] = P {w : A*(d)® = a}inthe
discrete case (and, similarly in the continuous one).

3.4. Computation through APS

Computationally, ARA models entail integration and opti-
mization procedures that can be challenging in many cases.
Therefore, we explore the APS-based methods sketched
in the introduction.

An augmented distribution for the Defender’s prob-
lem is introduced as 7 (d, a, 6)ocup (d, 6) pp(01d, a) pp(ald).
Its marginal np(d) = {§np(d, a,0)dads is proportional
to the expected utility yp(d) and, consequently, dxp, =
mode (np(d)). Thus, one just needs to sample (d, a, 0) ~
np(d, a,0) and estimate its mode in d. In ? a Metropo-
lis Hastings sampling procedure is introduced to provide
a Markov chain with states (d, a, 6) whose stationary
distribution is np(d, a, 0). Under mild conditions, a con-
venient mode estimate of the d samples generated con-
verges to the ARA solution of the sequential game. Con-
structing this Markov chain, requires the ability to sam-
ple from pp(ald). To perform this sampling, an APS in
the space of the Attacker’s random utilities and probabili-
ties is constructed. For a given d, the random augmented
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distribution built is 114’ (a, 01d)ocUS’ (a, 0)Py (61d, a), its
marginal 19’ (ald) = §T13’(a, 6|d) do being proportional
to A’s random expected utility W§’ (d, a). Then, the ran-
dom optimal attack A*(d)* almost surely coincides with
the mode of the marginal 1Ty’ (ald). Consequently, by sam-
pling u,(a, 8) ~ Uy(a,0) and p,(6ld,a) ~ P4(0ld, a), one
can build 7ty (a, 6]d)ocun (a, 0)pa (01d, a) which is a sample
fromTi4(a, 61d). Then, mode(r,(ald)) is a sample of A* (d),
whose distribution is Pr [A*(d) < a] = pp(A < ald), thus
providing a mechanism to sample from it.

The type of computations underlying APS-based so-
lution methods for ARA are illustrated in an example in
Section 6.

4. Simultaneous Defend-Attack Games
4.1. Basic template

The simultaneous defend-attack game template is de-
picted in Figure 3, with the same semantics as that of
Figure 1. Observe that arc D — A is lacking, reflecting
that both agents act simultaneously in this case. As an
example, consider a national aviation security organisa-
tion that randomly assigns undercover security guards on
planes to deter terror acts. In turn, a terrorist organisation
might board a member on certain planes to implement
their malicious actions. The security consequences on a
given plane would depend on both agents’ decisions (pres-
ence of security guard and terrorist on the plane).

b () ]
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Figure 3. Template for basic two player simultaneous defend-attack game.

In this case, the ARA approach would support D by solv-
ing djp, = argmaxy.p, {Wp(d,a) - pp(a)da where pp(a)
represents D’s beliefs about what action a will the attacker
implement. In order to forecast it, consider the attacker’s
problem a* = argmax,_, {a(d,a) - pa(d)dd. Since we
lack knowledge about the attacker’s utilities and probabil -
ities, we adopt a Bayesian approach and model our uncer-
tainty through prior distributions (over possible utilities
and probabilities) Uy (a, 8), P4(0ld, a) and P,(d) defined
over a common probability space (Q, F, P) with atomic
elements w € Q. Then, the random optimal attack is

A* = argmaxf\lf;\“ (d,x) - Py (d)dd (1)
xe A

and make pp(A < a) = P(A* < a). This defines pp(a), the
missing ingredient in the Defender problem.
Clearly, the above requires the specification of Uy (a, 0),

P4(0ld,a), and P4(d)]. Of these three ingredients, elicit-
ing P, (d) has a recursive component as we need to think
about how the attacker thinks about the defender, which
in turn begs for thinking about how the defender thinks
about how the attacker thinks about the defender, and so
on. This leads to a recursion similar to the level-k scheme
described in Rios and Insua (2012). As mentioned in the
Introduction, we shall only focus on level-2 thinking, al-
though the scheme described extend to higher levels in
the thinking hierarchy.

As in the sequential case, ARA models may be solved
through APS constructing augmented distributions. The
distribution corresponding to the Defender’s problem is

np(d, 8, a)ocup(d, 6) 'pD(eld)a) -pp(a) (2)

its marginal being np(d) = (fup(d,®) - pp(@ld,a) -
pp(a) do da which is proportional to the expected utility
¥p(d) and, consequently, d3p, = mode(np(d)). As in the
sequential case, we can solve the problem sampling d, 6
and a from np(d, 6, a), and computing the mode of the d-
samples. This sampling is performed using MCMC meth-
ods. In particular, a Metropolis-Hastings is illustrated in
Algorithm 1. Notice that this approach requires the ability
to sample a ~ pp(a). To produce those samples, consider
now the attacker random APS model, defined for each w
through

My (d, 8, a)cUf’ (a,0) - PR (61d, a) - Py’ (d) 3)

Then, the random mode of the marginal of 11 (d, 0, a)
in a coincides with A*, whose distribution is pp(a).
Consequently, by sampling uy(a,0) ~  Uy(a,0),
pa(@ld,a) ~ Pu(0ld,a) and pa(d) ~ P4(d) one can
build 74 (a, 0ld)ocuy (a, 0)pa(0ld, a)p(d) which is a sample
from TT4(a, 0,d). Then, mode(ry(a)) is a sample of A*,
whose distribution is Pr [A*(d) < a] = pp(A < ald), thus
providing a mechanism to sample from such distribution.
This procedure is illustrated in the sample_attack function
of Algorithm 1. Under mild conditions, we can prove the
convergence of the Algorithm to the ARA solution when
using a consistent mode estimator, see Chacon (2020).

5. General Games

The previous sections dealt with relatively simple ARA tem-
plates with basic sequences of defense and attack move-
ments. However, such stylized settings may not be suffi-
cient to cope with the complexities of many actual defense
and homeland security problems.

As an illustration, consider the BAID in Figure 4. In it,
the incumbent authorities decide how to allocate a given
number of patrols to prevent land access to a place of in-
terest (e.g. an airport) by a certain terrorist organization.
This decision is referred to as D;. The terrorists observe
the patrols’ display over a certain period and thus have



function sample_attack(M, K, ga, Uy, Py):
initialize : a(®)
Draw uy (a, 0) ~ Uy(a, 6)
Draw p,(0ld,a) ~ P,(6ld, a)
Draw py(d) ~ P,(d)
Draw d(©) ~ p,(d)
Draw 6(©) ~ p,(6ld!
fori = 1toMdo > Inner APS
Propose new attack @ ~ g, (ala‘=V)
Draw d ~ p(d)
Draw & ~ p,(01d,a)
Evaluate acceptance probability
ua(@,0)-ga (a“"‘)lb) }

’ uA(a(ifl),e(ifl)).gA(ma(f*l))
With probability « set

d®,a® oMy = (d,a,?d). Otherwise, set

(dD g o) — (di-D) qli-1) gli-1)).
Discard first K samples and record the mode of

0 q(0)

a=min<{1

interest of the rest of draws {aK*1), ... a®™)} as
a*.
| returna*
input: Uy, P4, M, K, N, R, gp and g, proposal
distributions
initialize : d°
Draw a(®) ~ pp(a) using sample_attack(M, K, gy,

Uy, Pa)

Draw 6(®) ~ pp(61d©, a(®)

fori =1toNdo B _ © Outer APS

Propose new defense d ~ gp(d|d™Y)

Draw a ~ pp(a) using sample_attack (M, K, g,
Up, Pa) i

Draw 8 ~ pp(6ld,a)

Evaluate acceptance probability

up(d, e) @ d<' 1>|d }

uD(d(x 1) 9(1 1) gD d|d(1 1)

With probability « set (d), a®, o))
Otherwise, set
d®,a, sm) _ (D), qli-D gi-1)y,

Discard first R samples and estimate mode of the
rest of draws {d®*Y, ..., d™} as diz

Record djg,.

oc=min{1

=(d,a,d).

Algorithm 1: MH based APS to approximate ARA
solution in the simultaneous defend-attack game.

knowledge of D;. Based on this, the terrorists decide when
toaccess the place of interest with the intention of commit-
ting an attack. This decision is referred to as A;. Whether
the terrorists manage to access the airport without be-
ing detected by the patrols is modeled through variable
S;. Provided that the terrorist have a successful access,
their vehicles can still be detected before the attack is com-
mitted (for instance, via helicopters supervising the area).
Whether or not the terrorists’ vehicles are detected after
land access is modeled with the variable S,. If the terrorists
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are indeed detected, they choose to change their attack-
ing strategy (for instance, modify their target). The new
attacking decision is denoted as A,. Simultaneously, the
authorities decide to allocate reinforcement patrols to fur-
ther protect the airport. Based on these two decisions, the
outcome S; models the (random) consequences of an even-
tual attack. For each agent, there is a utility node which
assesses their consequences, respectively represented by
up and uy, in Figure 4. In particular, the defender’s util-
ity up (respectively, the attacker’s utility u, ) will depend
on her decisions D; and D,, (respectively, his decisions A;
and A,) and the results S;, S, and S3. Moreover, this, or
similar sequences of defense-attack movements, could
be repeated across time, spanning over several planning
periods.

Note that within the general layout of the BAID in Fig-
ure 4, we identify patterns of defence and attack moves as
those earlier described as basic templates. In particular,
nodes D;—A; correspond to the Seq D-A template. Simi-
larly, nodes D; —A, reproduce the backbone structure of a
Sim D-A template.

N > D2
T A
! |
! (
I
I
I
| S1 Ss
1
\ |
' )
Y Y
A - - - > A

Figure 4. ARA modeling of general BAID example.

In Gonzalez-Ortega et al. (2019), a scheme for deal-
ing with these structures was introduced adapting strate-
gic relevance concepts from computational game theory
(Koller, 2003), ARA methods (Banks et al., 2015), and clas-
sic influence diagram reductions from Shachter (1986).
However, the basic reduction operations, were essentially
analytic. Inspired by the reasoning in Appendix B, we re-
place here such operations with APS schemes.
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5.1. Simulation based BAID reduction operations

The methods in Gonzalez-Ortega et al. (2019) assess ana-
lytically a BAID from an ARA perspective. First, they are
used to decide whether we deal with a sequential or a si-
multaneous block. Once such decision is made, we decide
which ID reduction to implement, according to Shachter
(1986)’s conditions. At a third level, we then implement
the required ID reductions until the incumbent block is re-
duced. In such case, we start again finding the next block
to be treated, until all the Defender’s decision nodes are
reduced.

ID reductions in the Defender problem (D-reductions)
are as in Shachter (1986). On the contrary, ID reductions
in the Attacker problem (A-reductions) need to be modified
to take into account the uncertainty about the attacker’s
probabilities and utilities. As before, without loss of gen-
erality, assume that all involved random utilities U, and
probabilities P, are defined over a common probability
space (Q, F, P) with atomic elements w. Thus, when in-
voking them in reference to w, we designate them U," and
P;*, respectively. The remaining notation is adapted from
Shachter (1986) where: superscripts old and new refer to
an element, respectively, before or after a BAID transfor-
mation; and, for any node i, C(i) designates its conditional
predecessors (chance and value nodes), I(i) its informa-
tional predecessors (decision nodes) and S(i) its direct suc-
cessors. Initially, we denote W ;" (x¢c(v)) = Uy” (Xc(v)), where
v refers to the value node. Gonzalez-Ortega et al. (2019)
provided their theoretical analytical descriptions which
we briefly recall:

- A-Arcinversion. An arc (i, j) between chance nodes i and
j (for the attacker), satisfying Shachter (1986) condi-
tions may be reduced with node inheritance as in con-
ventional IDs. (Random) probability assessments are
changed by applying Bayes’ formula parametrically so
that

PA’U new(lechewo‘)) = jPAw old(Xj|XCD1d(j))PA"U °ld(x,~|xco,d(l.)) dXi,

(4)

old old
P& "W (x, |x N) = PAw (lexcald(}-))PX} (Xi|XCold(,'))
A ilAcnew(j)) = p w new | - .
A (X] chewu))

(5)

- A-Chance node removal. A chance node i (for the at-
tacker) satisfying Shachter (1986) conditions may be
removed with node inheritance as in conventional IDs.
Note, however, that expectations have to be taken para-
metrically so that we obtain (random) expected utilities.
Prior to node i reduction, we have a (random) expected
utility w2° old (Xoia(y)) associated with each combina-
tion Xgou ) of values for predecessors of v. After the
reduction, we associate with v a new (random) expected

utility defined by

Id
WX) neW(chew(V)) = J‘WALUO (XCOM(\/))PX)(XilXC(i)) dx;.

(6)

« A-Decision node removal. Under Shachter (1986) con-
ditions, we may remove a decision node i (for the at-
tacker) with node inheritance as in conventional IDs, by
computing the expected utility of the (random) optimal
alternatives, conditional on the values of its predeces-
sors. (Random) optimal alternatives are stored through

A; *(cheW(v)):afg;_naX WA (i Xgnen )y (7)

whereas their (random) expected utilities are

w hew

Id
Yo (Xerew(y)) = max YA P0G, Xenen ). (8)

Now the crucial observation is that for expected utility
optimization purposes, the denominator in Bayes’ formula
operates as a constant and we can just use the potential on
the right of the proportionality condition

pAw HEW(Xilxcnew<i>)me) Old(lexcoldU)) pAw Old(xi |Xcold(i))y . (9)

thus avoiding the costly arc inversions. Then, we can
group all arc inversions and chance node removals prior to
a decision node removal conceptually and, operationally,
by multiplying the corresponding parameterized poten-
tials and distributions. Next, we just multiply them by the
parameterized utility function to obtain the parameter-
ized augmented probability distribution, from which we
may sample to obtain a forecast of the attacker’s action as
required.

In a similar fashion, we can determine all arc inver-
sions and decision nodes prior to a defender decision node
removal, multiply her utility function by the product of
potentials and distributions to obtain an augmented prob-
ability distribution from which to sample the defender’s
optimal decision at such stage.

These APS modified operations would be integrated in
the operation and block scheduling scheme in Gonzalez-
Ortega et al. (2019) to provide an APS approach to general
BAIDs.

6. Example

An example illustrates the type of computations under-
taken in APS for ARA in a simple sequential Defend-Attack
game. Consider an organization (D) that has to choose
among ten security protocols: d = 0 (no extra defensive
action); d = i (level i protocol with increasing protection),
i=1,...,8;d = 9 (safe but cumbersome protocol). A has
two alternatives: attack (a = 1) or not (a = 0). Successful
(unsuccessful) attacks are denoted as 8 = 1 (6 = 0). When



there is no attack, 6 = 0.

0 a

d o] 1 d 0] 1

0 005 705 0 00 050

1 010 710 1 00 040

2 015 715 2 00 035

3 020 720 3 00 030

4L 025 725 L 00 025

5 030 730 5 00 0.20

6 035 735 6 00 015

7 040 740 7 00 010

8 045 745 8 00 005

9 050 750 9 00 o001
(@) (b)

d 2%} Ba

0 500 500

1 40.0  60.0

2 350 650

3 300 700

4L 250 750

) 5 200 800

- 6 150 850

a 0 1 7 100 90.0

0 000 0.0 8 50  95.0

1 -053 197 9 1.0  99.0
(c) (@)

Table 1. a Def. net costs; b Successful attack probs.; ¢ Att. net benefits; d
Beta dist. parameters

Defender non strategic judgments. Table 1a presents costs
¢p associated with each decision and outcome, based on a
7M€ business valuation; and 0.05M<€ base security cost
plus 0.05M€ per each security level increase. Upon suc-
cessful attack, D loses the entire business value. The proba-
bility pp(6 = 1ld, a) of successful attack is in Table 1b (com-
plementary values for unsuccessful attacks). D is constant
risk averse in costs, with utility strategically equivalent to
Uup(cp) = —exp (0.4 x Cp).

Attacker judgments. Theaverage attack costis 0.03M<€. The
average attack benefit is 2M€. An unsuccessful attack has
an extra cost of 0.5M €. Table 1c presents the Attacker’s net
benefit ¢4 (a, 0). D thinks that A is constant risk prone over
benefits, with utility strategically equivalent to u, (c4) =
exp (e x ¢4), with e > 0.

Defender strategic judgments. D’s beliefs over A’s judg-
ments are described through P, and U,. Assume A’s ran-
dom probability of success is modeled as P, (6 = 1ld,a =
1) ~ Beta(«g, p4) With oy and B4 in Table 1d (with expected
values the pp(0 = 1ld, a) in Table 1b). In addition, A’s risk
coefficient e is uncertain, with e ~ ¢/(0, 2), inducing the
random utility Ug(ca).

In this case, for APS, as the cardinality of D is small, one
can estimate the value of pp(ald) for each d sampling from
this distribution and counting frequencies of different at-
tacks. Figure 5a presents such estimates pp(ald). Next,
the ARA solution for the Defender is computed. Figure
5b presents the frequency of samples from the marginal
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Figure 5. Estimation of pp (ald) through ARA

nip(d). Its mode coincides with the optimal defense, dxp, =
9.

For this same example, the game theoretic solution un-
der the complete information assumption is di;, = 8. Both
solutions differ as the informational assumptions are dif-
ferent in both settings: the ARA decision appears to be
more conservative, as it suggests a safer but more expen-
sive defense.

7. Discussion

APS based methods have already been proven successful in
sequential Defend-Attack games Ekin et al. (2022). In this
paper, we have extended APS to deal with general games
represented as BAIDs from an ARA perspective. Sequential
and simultaneous defend-attack models paved the way to
deal with general problems modeled as bi-agent influence
diagrams. In Appendix A, we sketch how this methodol-
ogy could be extended to work with n-stages sequential
games. However, in this setting, APS is likely to suffer
from the typical computational shortcomings of dynamic
programming. Thus, studying scalable methods for solv-
ing n-stage sequential games under the ARA perspective
is an interesting avenue for future research. In addition,
exploring the use of Hamiltonian Monte Carlo methods
for APS in situations in which gradients of the utilities are
available is also a promising future research line.

We would like to finish acknowledging that the pro-
posed approach will become specially relevant in a recent
class of security game theoretic models, especially under
incomplete information, appearing in the emergent field
of adversarial machine learning (Rios Insua et al., 2020).
Efficient scalable algorithmic approaches to solve typical
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problems in this new domain are essential. Moreover, ARA
solutions of such games turns out to be important, as com-
mon knowledge assumptions rarely hold in AML.

8. Funding

Research supported by the AXA-ICMAT Chair in Adver-
sarial Risk Analysis(PI David Rios Insua), the EOARD-
AFOSR project RC2APD, GRANT 13324227 (PIs David Rios
Insua and Tahir Ekin) and the STARLIGHT H2020 project
101021797 (PI Nizar Touleimat). None of the funding bod-
ies influenced on the design of this research and the writ-
ing of the manuscript.

References

Banks, D. L., Aliaga, J. R., and Insua, D. R. (2015). Adver-
sarial Risk Analysis. CRC Press.

Bielza, C., Miiller, P., and Insua, D. R. (1999). Decision anal-
ysis by augmented probability simulation. Management
Science, 45(7):995—1007.

Brown, G., Carlyle, M., Salmerén, J., and Wood, K. (2006).
Defending critical infrastructure. Interfaces, 36(6):530—
544.

Brown, G. G., Carlyle, W. M., and Wood, R. K. (2008). Opti-
mizing Department of Homeland Security defense invest-
ments: Applying Defender-Attacker(-Defender) optimiza-
tion to terror risk assessment and mitigation. National
Academies Press, Washington, DC:. Appendix E.

Chacon, J. (2020). The modal age of statistics. International
Statistical Review, 88(1):122—141.

Chung, K. L. (2001). A Course in Probability Theory. Aca-
demic Press.

Ekin, T., Naveiro, R., Insua, D. R., and Torres-Barran, A.
(2022). Augmented probability simulation methods
for sequential games. European Journal of Operational
Research.

French, S.and Insua, D. R. (2000). Statistical decision theory.
Wiley.

Gil, C. and Parra-Arnau, J. (2019). An Adversarial-Risk-
Analysis Approach to Counterterrorist Online Surveil -
lance. Sensors, 19(3).

Gil, C., Rios Insua, D., and Rios, J. (2016). Adversarial Risk
Analysis for Urban Security Resource Allocation. Risk
Analysis, 36(4):727—741.

Gonzalez-Ortega, J., Insua, D. R., and Cano, J. (2019). Ad-
versarial risk analysis for bi-agent influence diagrams:
An algorithmic approach. European Journal of Opera-
tional Research, 273(3):1085—1096.

Hargreaves-Heap, S. and Varoufakis, Y. (2004). Game the-
ory: a critical introduction. New York, Routledge.

Harsanyi, J. C. (1967). Games with incomplete informa-
tion played by “Bayesian” players, [-III Part I. the basic
model. Management science, 14(3):159—182.

Hausken, K. (2011). Strategic defense and attack of series
systems when agents move sequentially. IIE Transac-
tions, 43(7):483-504.

Joshi, C., Aliaga, J. R, and Insua, D. R. (2020). Insider
threat modeling: An adversarial risk analysis approach.
IEEE Transactions on Information Forensics and Security,
16:1131—1142.

Kadane, J. B. and Larkey, P. D. (1982). Subjective proba-
bility and the theory of games. Management Science,
28(2):113—-120.

Koller, D. Milch, B. (2003). Multi-agent influence dia-
grams for representing and solving games. Games and
Economic Behavior, 45(1):181—-221.

Korzhyk, D., Yin, Z., Kiekintveld, C., Conitzer, V., and
Tambe, M. (2011). Stackelberg vs. Nash in security
games: An extended investigation of interchangeabil -
ity, equivalence, and uniqueness. jour. Art. Intell. Res.,
41:297-327.

Naveiro, R., Redondo, A., Insua, D. R., and Ruggeri, F.
(2019). Adversarial classification: An adversarial risk
analysis approach. International Journal of Approximate
Reasoning, 113:133 — 148.

Raiffa, H. (1982). The art and science of negotiation (2003
ed.). Cambridge, MA: Harvard University Press.

Raiffa, H., Richardson, J., and Metcalfe, D. (2002). Negoti-
ation analysis: The science and art of collaborative decision
making (2002 ed.). Cambridge, MA: Harvard University
Press.

Rios, J.and Insua, D. R. (2012). Adversarial risk analysis for
counterterrorism modeling. Risk Analysis, 32(5):894—
915.

Rios Insua, D., Banks, D., and Rios, J. (2016). Modeling
opponents in adversarial risk analysis. Risk Analysis,
36(4):742—1755.

Rios Insua, D., Couce-Vieira, A., Rubio, J. A., Pieters, W.,
Labunets, K., and G. Rasines, D. (2019). An adversarial
risk analysis framework for cybersecurity. Risk Analysis,
£41(1):16—36.

Rios Insua, D., Naveiro, R., Gallego, V., and Poulos, ]J.
(2020). Adversarial Machine Learning: Perspectives
from adversarial risk analysis. arXiv e-prints, page
arXiv:1908.06901.

Rios Insua, D., Rios, J., and Banks, D. (2009). Adversarial
risk analysis. Journal of the American Statistical Associa-
tion, 104(486):841—854.

Roponen, J. and Salo, A. (2015). Adversarial risk analysis
for enhancing combat simulation models. Journal of
Military Studies, 6(2):82—103.

Sevillano, J. C., Insua, D. R., and Rios, J. (2012). Adver-
sarial Risk Analysis: The Somali Pirates Case. Decision
Analysis, 9(2):86—95.

Shachter, R. D. (1986). Evaluating influence diagrams.
Operations research, 34(6):871—882.

Stahl, D. 0. and Wilson, P. W. (1995). On players’ models
of other players: Theory and experimental evidence.
Games and Economic Behavior, 10(1):218 —254,.

Wang, S. and Banks, D. (2011). Network routing for insur-
gency: An adversarial risk analysis framework. Naval
Research Logistics (NRL), 58(6):595—607.

Zhuang, J. and Bier, V. M. (2007). Balancing terrorism and


http://dx.doi.org/10.13039/501100001961
http://dx.doi.org/10.13039/100015464
http://dx.doi.org/10.13039/100000181
http://dx.doi.org/10.13039/100010683

natural disasters—defensive strategy with endogenous
attacker effort. Operations Research, 55(5):976—991.

A. The n-stage Sequential Game

The proposed scheme for the two stage sequential Defend-
Attack game extend to multiple stage games, informing
our general approach in Section 4. Consider a general n-
stage sequential game under incomplete information in
which the defender moves first by choosing decision d; e
D,. After observing d, the attacker selects a, € A,. Sub-
sequently, the defender observes a,, and decides d € D;.
Interactions between players continue until stage n. After
all actions have been chosen, the uncertainty 6 is resolved.
In general, the distribution of 8 depends on all actions
taken. For simplicity, denote by S; the sequence of actions
taken from stage i. For instance, if the defender moves
at stage i, S; = {d;,aj;1,di;5,...},and S;_; = S; U Gj_;.
Then, the defender’s beliefs about 6, given the sequence
S1, are encoded in the distribution pp(01S;). In addition,
denote the Defender’s (Attacker’s) utility at the i-th stage
as up, (d;, 0) (ug,(a;,0)).

With this, at the first stage, the defender needs to solve
for df = argmax, {up, (di,0) - pp(61S1) - pp(S21d1) e dss,
where pp(S,|d;) encodes the Defender’s beliefs about the
sequence of actions starting at the second stage, given that
she chooses d; at the first stage. We define an augmented
distribution over the space of decisions and uncertainties
ﬂD(dl) 9, Sz)OCUDl (dl, e) . p(e ISl) . pD(SZ Id]): its mode in dl
coincides with df. Thus, we could solve the problem gen-
erating samples d;, 6, S» ~ 7tp(d1, 0, S2) and computing the
mode of the d; samples.

This requires generating sequences of actions given de-
cisiond,, S» ~ pp(S21d;. Note that we can write pp (S, 1d;) =
pp(azldi) - pp(dsldi,az)--- Thus, S, can be sampled se-
quentially, by first sampling a, ~ pp(a,ld;), then d; ~
pp(d3ldi, a), and so on. Note also that:

1. Foreveryi, pp(d;ldi,as,...,a;_,) is a point mass cen-
tered at the solution of the i-th stage problem, which can
be computed using APS, as we did in the first stage prob-
lem.

2. For every i, sampling a; ~ pp(q;ldy, as,...,d;_,), re-
quires solving the Attacker’s i-th stage problem. Let
us illustrate how this could be done leveraging the ARA
methodology with the Attacker’s second stage problem.
In such stage, after observing d,, a expected utility maxi-
mizer attacker would choose

af - argmax [y, (@,0) paColds, ;)
a
pA(Sgldl,az)dedS}
However, the Defender is uncertain about the
Attacker’s utilities and probability judgments.

As we did in the 2 stage game, for a given d;,
the random augmented distribution built is
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TIX; (az, S39|d1)och\‘; (az, G)PX’ (Gldl, a,, S3)PZU (53 |d1, az),
its marginal on a, is proportional to A’s ran-
dom expected utility. Consequently, by sampling
UAl(az, G) ~ UAZ(Clz, 0), pA(eldl, 02,53) ~ PA(e|d1, (12,53)
and pa(S3ldi,az) ~  P4(S3ldi,a;) one can build
ﬂAz(az,Sgeldl) which is a Sample from ﬂAz(az,S39|d1).
Then, the mode of its marginal in a, is distributed as
pp(azldy), thus providing a mechanism to sample from
such distribution. Notice that modeling the Defender’s
uncertainty about p,(S;ldi, az), entails constructing a
hierarchy of decision-making problems.
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